DOI QR코드

DOI QR Code

Smart Plant Disease Management Using Agrometeorological Big Data

농업기상 빅데이터를 활용한 스마트 식물병 관리

  • Received : 2020.07.28
  • Accepted : 2020.08.24
  • Published : 2020.09.30

Abstract

Climate change, increased extreme weather and climate events, and rapidly changing socio-economic environment threaten agriculture and thus food security of our society. Therefore, it is urgent to shift from conventional farming to smart agriculture using big data and artificial intelligence to secure sustainable growth. In order to efficiently manage plant diseases through smart agriculture, agricultural big data that can be utilized with various advanced technologies must be secured first. In this review, we will first learn about agrometeorological big data consisted of meteorological, environmental, and agricultural data that the plant pathology communities can contribute for smart plant disease management. We will then present each sequential components of the smart plant disease management, which are prediction, monitoring and diagnosis, control, prevention and risk management of plant diseases. This review will give us an appraisal of where we are at the moment, what has been prepared so far, what is lacking, and how to move forward for the preparation of smart plant disease management.

기후변화와 이상기후, 급변하는 사회경제적 환경 하에 식량안보를 확보하고 지속가능한 성장을 위해서는 기존의 관행농업을 벗어나 빅데이터와 인공지능을 활용한 스마트농업으로의 전환이 시급하다. 스마트농업을 통해 식물병을 효율적으로 관리하기 위해서는 다양한 첨단기술과 융합할 수 있는 농업 빅데이터가 우선 확보되어야 한다. 본 리뷰에서는 스마트식물병관리를 위해 식물병리학 분야에서 기여할 수 있는 기상환경 및 농업 빅데이터에 대해 알아보고 이를 활용한 식물병의 예측, 모니터링 및 진단, 방제, 예방 및 위험관리의 각 단계별로 현재 우리가 어느 위치에 있는지를 살펴보았다. 이를 바탕으로 현재까지 스마트식물병관리를 위해 준비해온 것과 미흡했던 부분, 앞으로 나아가야 할 방향을 제시하고자 한다.

Keywords

References

  1. Ahn, J. and Lee, H. 2015. Smart farm using IoT that change the lives of rural people. Plan. Policy 5: 19-26.
  2. Anantrasirichai, N., Hannuna, S. and Canagarajah, N. 2017. Automatic leaf extraction from outdoor images. arXiv 1709.06437.
  3. Barbedo, J. G. A. 2018. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172: 84-91. https://doi.org/10.1016/j.biosystemseng.2018.05.013
  4. Bell, H., Wakefield, M., Macarthur, R., Stein, J., Collins, D., Hart, A. et al. 2014. Plant health surveys for the EU territory: an analysis of data quality and methodologies and the resulting uncertainties for pest risk assessment (PERSEUS) CFP/EFSA/PLH/2010/01.EFSA Support. Publ. 11: 676E.
  5. Bendre, M. R., Thool, R. C. and Thool, V. R. 2015. Big data in precision agriculture: weather forecasting for future farming. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT), pp. 744-750. Institute of Electrical and Electronics Engineers, New York, NY, USA.
  6. Bera, T., Das, A., Sil, J. and Das, A. K. 2019. A survey on rice plant disease identification using image processing and data mining techniques. In: Emerging Technologies in Data Mining and Information Security, Advances in Intelligent Systems and Computing, Vol. 814, eds. by A. Abraham, P. Dutta, J. Mandal, A. Bhattacharya and S. Dutta, pp. 365-376. Springer, Singapore.
  7. Bronson, K. and Knezevic, I. 2016. Big data in food and agriculture. Big Data Soc. 3: 1-5.
  8. Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E. and Joly, A. 2017. Going deeper in the automated identification of Herbarium specimens. BMC Evol. Biol. 17: 181. https://doi.org/10.1186/s12862-017-1014-z
  9. Chen, M., Brun, F., Raynal, M. and Makowski, D. 2020. Forecasting severe grape downy mildew attacks using machine learning. PLoS ONE 15: e0230254. https://doi.org/10.1371/journal.pone.0230254
  10. Chene, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P. et al. 2012. On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 82: 122-127. https://doi.org/10.1016/j.compag.2011.12.007
  11. Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M. and Schmidhuber, J. 2011. Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, ed. by W. Toby, pp. 1237-1242. AAAI Press, Palo Alto, CA, USA.
  12. Coble, K. H., Mishra, A. K., Ferrell, S. and Griffin, T. 2018. Big data in agriculture: a challenge for the future. Appl. Econ. Perspect. Policy 40: 79-96. https://doi.org/10.1093/aepp/ppx056
  13. de Oliveira Aparecido, L. E., de Souza Rolim, G., De Moraes, J. R. D. S. C., Costa, C. T. S. and de Souza, P. S. 2020. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases. Int. J. Biometeorol. 64: 671-688. https://doi.org/10.1007/s00484-019-01856-1
  14. Devlin, B. 2012. The Big Data Zoo-Taming the Beasts: The Need for an Integrated Platform for Enterprise Information. 9sight Consulting, Cape Town, South Africa. 12 pp.
  15. Dietterich, T. G. 2000. Ensemble methods in machine learning. In: Multiple Classifier Systems, Vol. 1857 of Lecture Notes in Computer Science, eds. by J. Kittler and F. Roli, pp. 1-15. Springer, Berlin/Heidelberg, Germany.
  16. Ehler, L. E. 2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 62: 787-789. https://doi.org/10.1002/ps.1247
  17. Eum, H.-I., Kim, J. P. and Cho, J. 2018. High-resolution climate data from an improved GIS-based regression technique for South Korea. KSCE J. Civil Eng. 22: 5215-5228. https://doi.org/10.1007/s12205-017-1441-9
  18. Fahrentrapp, J., Ria, F., Geilhausen, M. and Panassiti, B. 2019. Detection of gray mold leaf infections prior to visual symptom appearance using a five-band multispectral sensor. Front. Plant Sci. 10: 628. https://doi.org/10.3389/fpls.2019.00628
  19. Fenu, G. and Malloci, F. M. 2019. An application of machine learning technique in forecasting crop disease. In: Proceedings of the 2019 3rd International Conference on Big Data Research, pp. 76-82. Association for Computing Machinery, New York, NY, USA.
  20. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186-194. https://doi.org/10.1038/nature10947
  21. Giraud, T., Gladieux, P. and Gavrilets, S. 2010. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol. Evol. 25: 387-395. https://doi.org/10.1016/j.tree.2010.03.006
  22. Grunwald, N. J. and Goss, E. M. 2011. Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Annu. Rev. Phytopathol. 49: 249-267. https://doi.org/10.1146/annurev-phyto-072910-095246
  23. Hammer, C., Kostroch, D. C., Quiros, G. and STA Internal Group. 2017. Big Data: Potential, Challenges and Statistical Implications. International Monetary Fund, Washington DC, USA. 41 pp.
  24. Hillnhutter, C., Mahlein, A.-K., Sikora, R. A. and Oerke, E.-C. 2011. Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Res. 122: 70-77. https://doi.org/10.1016/j.fcr.2011.02.007
  25. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N. et al. 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 29: 82-97.
  26. Ip, R. H. L., Ang, L.-M., Seng, K. P., Broster, J. C. and Pratley, J. E. 2018. Big data and machine learning for crop protection. Comput. Electron. Agric. 151: 376-383. https://doi.org/10.1016/j.compag.2018.06.008
  27. Ishii, K. 2014. Big data analysis in medicine, agriculture and environmental sciences. Seibutsu-kogaku Kaishi 92: 92-93.
  28. Jeon, S. 2011. Mechanisms of labor transition during agricultural transformation: the cases of South Korea and Indonesia. In: 2011 International Conference on Asia Agriculture and Animal IPCBEE, Vol. 13, pp. 21-26. IACSIT Press, Singapore.
  29. Kaundal, R., Kapoor, A. S. and Raghava, G. P. S. 2006. Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinformatics 7: 485. https://doi.org/10.1186/1471-2105-7-485
  30. Kim, C.-G., Lee, S.-M., Jeong, H.-K., Jang, J.-K., Kim, Y.-H. and Lee, C.-K. 2010. Impacts of Climate Change on Korean Agriculture and Its Counterstrategies. Korea Rural Economic Institute, Naju, Korea. 306 pp.
  31. Kim, M.-K., Han, M.-S., Jang, D.-H., Baek, S.-G., Lee, W.-S. and Kim, Y.-J. 2012. A production method for historical climate data with 1-km-resolution grids. Clim. Res. 7: 55-68. https://doi.org/10.3354/cr007055
  32. Kim, S., Lee, M. and Shin, C. 2018a. IoT-based strawberry disease prediction system for smart farming. Sensors 18: 4051. https://doi.org/10.3390/s18114051
  33. Kim, Y., Roh, J.-H. and Kim, H. Y. 2018b. Early forecasting of rice blast disease using long short-term memory recurrent neural networks. Sustainability 10: 34. https://doi.org/10.3390/su10010034
  34. Kumar, A. 2015. Science of omics for agricultural productivity: future perspective: a national conference report. Int. J. Comput. Bioinform. In Silico Model. 4: 607-610.
  35. LeCun, Y., Bengio, Y. and Hinton, G. 2015. Deep learning. Nature 521: 436-444. https://doi.org/10.1038/nature14539
  36. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86: 2278-2324. https://doi.org/10.1109/5.726791
  37. Li, X.-F., Chen, S.-H. and Guo, L.-F. 2014. Technological innovation of agricultural information service in the age of big data. J. Agric. Sci. Technol. 16: 10-15.
  38. Luo, W., Pietravalle, S., Parnell, S., Van den Bosch, F., Gottwald, T. R., Irey, M. S. et al. 2012. An improved regulatory sampling method for mapping and representing plant disease from a limited number of samples. Epidemics 4: 68-77. https://doi.org/10.1016/j.epidem.2012.02.001
  39. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G. and Johnson, B. A. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152: 166-177. https://doi.org/10.1016/j.isprsjprs.2019.04.015
  40. Magarey, R. D., Sutton, T. B. and Thayer, C. L. 2005. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95: 92-100. https://doi.org/10.1094/PHYTO-95-0092
  41. Mahlein, A.-K. 2016. Plant disease detection by imaging sensors: parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 100: 241-251. https://doi.org/10.1094/PDIS-03-15-0340-FE
  42. McRoberts, N., Hall, C., Madden, L. V. and Hughes, G. 2011. Perceptions of disease risk: From social construction of subjective judgments to rational decision making. Phytopathology 101: 654-665. https://doi.org/10.1094/PHYTO-04-10-0126
  43. Milgroom, M. G. and Fry, W. E. 1997. Contributions of population genetics to plant disease epidemiology and management. Adv. Bot. Res. 24: 1-30. https://doi.org/10.1016/S0065-2296(08)60069-5
  44. Mohanty, S. P., Hughes, D. P. and Salathe, M. 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7: 1419. https://doi.org/10.3389/fpls.2016.01419
  45. Mokhtar, U., Ali, M. A. S., Hassanien, A. E. and Hefny, H. 2015. Identifying two of tomatoes leaf viruses using support vector machine. In: Information Systems Design and Intelligent Applications, eds. by J. K. Mandal, S. C. Satapathy, M. K. Sanyal, P. P. Sarkar and A. Mukhopadhyay, pp. 771-782. Springer, New Delhi, India.
  46. Montone, V. O., Fraisse, C. W., Peres, N. A., Sentelhas, P. C., Gleason, M., Ellis, M. et al. 2016. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states. Int. J. Biometeorol. 60: 1761-1774. https://doi.org/10.1007/s00484-016-1165-4
  47. Moschini, G. and Hennessy, D. A. 2001. Uncertainty, risk aversion, and risk management for agricultural producers. In: Handbook of Agricultural Economics, Vol. 1, eds. by B. L. Gardner and G. C. Rausser, pp. 87-153. Elsevier, Amsterdam, Netherlands.
  48. Nelson, M. R., Orum, T. V., Jaime-Garcia, R. and Nadeem, A. 1999. Applications of geographic information systems and geostatistics in plant disease epidemiology and management. Plant Dis. 83: 308-319. https://doi.org/10.1094/PDIS.1999.83.4.308
  49. Nettleton, D. F., Katsantonis, D., Kalaitzidis, A., Sarafijanovic-Djukic, N., Puigdollers, P. and Confalonieri, R. 2019. Predicting rice blast disease: machine learning versus process-based models. BMC Bioinformatics 20: 514. https://doi.org/10.1186/s12859-019-3065-1
  50. Noyes, K. 2014. Big data poised to change the face of agriculture. Fortune data. URL http://fortune.com/2014/05/30/croppingup-on-every-farm-big-data-technology/ [30 May 2014].
  51. Ojiambo, P. S., Yuen, J., Van den Bosch, F. and Madden, L. V. 2017. Epidemiology: past, present, and future impacts on understanding disease dynamics and improving plant disease management: a summary of focus issue articles. Phytopathology 107: 1092-1094. https://doi.org/10.1094/PHYTO-07-17-0248-FI
  52. Paoletti, M. E., Haut, J. M., Plaza, J. and Plaza, A. 2019. Deep learning classifiers for hyperspectral imaging: a review. ISPRS J. Photogramm. Remote Sens. 158: 279-317. https://doi.org/10.1016/j.isprsjprs.2019.09.006
  53. Pascual, L., Romo, J. and Ruiz, E. 2006. Bootstrap prediction for returns and volatilities in GARCH models. Comput. Stat. Data Anal. 50: 2293-2312. https://doi.org/10.1016/j.csda.2004.12.008
  54. Pavan, W., Fraisse, C. W. and Peres, N. A. 2009. A web-based decision support tool for timing fungicide applications in strawberry. EDIS 9: 1-5.
  55. Polak, L. and Milos, J. 2020. Performance analysis of LoRa in the 2.4 GHz ISM band: coexistence issues with Wi-Fi. Telecommun. Syst. 74: 299-309. https://doi.org/10.1007/s11235-020-00658-w
  56. Raza, S.-e.-A., Prince, G., Clarkson, J. P. and Rajpoot, N. M. 2015. Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS ONE 10: e0123262. https://doi.org/10.1371/journal.pone.0123262
  57. Rose, D. C. and Chilvers, J. 2018. Agriculture 4.0: broadening responsible innovation in an era of smart farming. Front. Sustain. Food Syst. 2: 87. https://doi.org/10.3389/fsufs.2018.00087
  58. Rowlandson, T., Gleason, M., Sentelhas, P., Gillespie, T., Thomas, C. and Hornbuckle, B. 2015. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 99: 310-319. https://doi.org/10.1094/PDIS-05-14-0529-FE
  59. Ruane, A. C., Goldberg, R. and Chryssanthacopoulos, J. 2015. Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 200: 233-248. https://doi.org/10.1016/j.agrformet.2014.09.016
  60. Ryan, S. F., Adamson, N. L., Aktipis, A., Andersen, L. K., Austin, R., Barnes, L. et al. 2018. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. Biol. Sci. 285: 20181977.
  61. Sabarina, K. and Priya, N. 2015. Lowering data dimensionality in big data for the benefit of precision agriculture. Procedia Comput. Sci. 48: 548-554. https://doi.org/10.1016/j.procs.2015.04.134
  62. Sannakki, S. S., Rajpurohit, V. S., Nargund, V. B., Kumar, R. A. and Yallur, P. S. 2011. Leaf disease grading by machine vision and fuzzy logic. Int. J. Comput. Technol. Appl. 2: 1709-1716.
  63. Scherm, H., Ngugi, H. K. and Ojiambo, P. S. 2006. Trends in theoretical plant epidemiology. Eur. J. Plant Pathol. 115: 61-73. https://doi.org/10.1007/s10658-005-3682-6
  64. Schmidhuber, J. and Tubiello, F. N. 2007. Global food security under climate change. Proc. Natl. Acad. Sci. U. S. A. 104: 19703-19708. https://doi.org/10.1073/pnas.0701976104
  65. Schonfeld, M. V., Heil, R. and Bittner, L. 2018. Big data on a farm: smart farming. In: Big Data in Context, eds. by T. Hoeren and B. Kolany-Raiser, pp. 109-120. Springer, Cham, Switzerland.
  66. Seo, Y. J. 2016. Korea's smart agriculture status and major challenges. World Agric. 185: 51-71. (In Korean)
  67. Shtienberg, D. 2013. Will decision-support systems be widely used for the management of plant diseases? Annu. Rev. Phytopathol. 51: 1-16. https://doi.org/10.1146/annurev-phyto-082712-102244
  68. Sonka, S. 2015. Big Data: from hype to agricultural tool. Farm Policy J. 12: 1-9.
  69. Sperschneider, J. 2019. Machine learning in plant-pathogen interactions: empowering biological predictions from field scale to genome scale. New Phytol. 228: 35-41. https://doi.org/10.1111/nph.15771
  70. Stubbs, M. 2016. Big Data in U.S. Agriculture. Report R44331. Congressional Research Service, Washington, DC, USA. 14 pp.
  71. Surendrababu, V., Sumathi, C. P. and Umapathy, E. 2014. Detection of rice leaf diseases using chaos and fractal dimension in image processing. Int. J. Comput. Sci. Eng. 6: 69-74.
  72. Tantalaki, N., Souravlas, S. and Roumeliotis, M. 2019. Data-driven decision making in precision agriculture: the rise of Big Data in agricultural systems. J. Agric. Food Inf. 20: 344-380. https://doi.org/10.1080/10496505.2019.1638264
  73. Too, E. C., Yujian, L., Njuki, S. and Yingchun, L. 2019. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161: 272-279. https://doi.org/10.1016/j.compag.2018.03.032
  74. Tripathy, A. K., Adinarayana, J., Vijayalakshmi, K., Merchant, S. N., Desai, U. B., Ninomiya, S. et al. 2014. Knowledge discovery and leaf spot dynamics of groundnut crop through wireless sensor network and data mining techniques. Comput. Electron. Agric. 107: 104-114. https://doi.org/10.1016/j.compag.2014.05.009
  75. United Nations Economic Commission for Europe. 2013. Classification of types of big data. URL http://www1.unece.org/stat/platform/display/bigdata/Classification+of+Types+of+Big+Data [2 August 2016].
  76. Vashi, S., Ram, J., Modi, J., Verma, S. and Prakash, C. 2017. Internet of Things (IoT): a vision, architectural elements, and security issues. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 492-496. Institute of Electrical and Electronics Engineers, New York, USA.
  77. Verhoosel, J., van Bekkum, M. and Verwaart, T. 2016. HortiCube: a platform for transparent, trusted data sharing in the food supply chain. In: Proceedings in System Dynamics and Innovation in Food Networks 2016, eds. by G. Schiefer and U. Rickert, pp. 384-388. Universitat Bonn-ILB Press, Bonn, Germany.
  78. Vogt, W. 2013. Looking at big data one plant at a time. Farm Industry News. URL http://farmindustrynews.com/blog/looking-bigdata-one-plant-time [7 May 2015].
  79. Wahabzada, M., Mahlein, A.-K., Bauckhage, C., Steiner, U., Oerke, E.- C. and Kersting, K. 2015. Metro maps of plant disease dynamics: automated mining of differences using hyperspectral images. PLoS ONE 10: e0116902. https://doi.org/10.1371/journal.pone.0116902
  80. Weersink, A., Fraser, E., Pannell, D., Duncan, E. and Rotz, S. 2018. Opportunities and challenges for big data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 10: 19-37. https://doi.org/10.1146/annurev-resource-100516-053654
  81. Wetterich, C. B., Kumar, R., Sankaran, S., Junior, J. B., Ehsani, R. and Marcassa, L. G. 2013. A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of citrus huanglongbing disease in USA and Brazil. In: Frontiers in Optics 2013/Laser Science, pp. JW3A-26. Optical Society of America, Washington, DC, USA.
  82. Wolfert, S., Ge, L., Verdouw, C. and Bogaardt, M.-J. 2017. Big data in smart farming: a review. Agric. Syst. 153: 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
  83. World Meteorological Organization. 2010. Guide to Agricultural Meteorological Practices. World Meteorological Organization No. 134. World Meteorological Organization, Geneva, Switzerland. 799 pp.
  84. Yan, J., Risacher, S. L., Shen, L. and Saykin, A. J. 2018. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief. Bioinform. 19: 1370-1381.
  85. Yang, X. and Guo, T. 2017. Machine learning in plant disease research. Eur. J. BioMed. Res. 3: 6-9. https://doi.org/10.18088/ejbmr.3.1.2017.pp6-9
  86. Yeo, H. 2019. Overseas agricultural big data utilization status. World Agric. 266: 37-52. (In Korean)