• Title/Summary/Keyword: ANN equation

Search Result 60, Processing Time 0.024 seconds

Analytical nonlocal elasticity solution and ANN approximate for free vibration response of layered carbon nanotube reinforced composite beams

  • Emrah Madenci;Saban Gulcu;Kada Draiche
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.251-263
    • /
    • 2024
  • This article investigates the free vibration behavior of carbon nanotube reinforced composite (CNTRC) beams embedded using variational analytical methods and artificial neural networks (ANN). The material properties of layered functionally graded CNTRC (FG-CNTRC) beams are estimated using nonlocal parameters modified power-law with different types of CNT distributions through the thickness direction of the beam. Adopting Eringen's nonlocal elasticity theory to capture the small size effects, the nonlocal governing equations are derived and solved using the analytical method. And also, the problem was analyzed using the ANN method. The architecture of the proposed ANN model is 3-9-1. In the experiments, we used 112 different data to predict the natural frequency using ANN. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion as well as the boundary conditions of the beam are derived using Hamilton's principle. The classical beam theory is used to formulate a governing equation for predicting the free vibration of laminated CNTRC beams. According to the experimental results, the prediction ability of the ANN model is very good and the natural frequency can be predicted in ANN without attempting any experiments.

Prediction of Concrete Strength Using Artificial Neural Networks (인공신경망을 이용한 콘크리트 강도 추정)

  • 이승창;안정찬;정문영;임재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.997-1002
    • /
    • 2002
  • Traditional prediction models have been developed with a fixed equation form based on the limited number of data and parameters. If new data is quite different from original data, then the model should update not only its coefficients but also its equation form. However, artificial neural network (ANN) does not need a specific equation form. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. Therefore, the purpose of this paper is to develop the I-PreConS (Intelligent system for PREdiction of CONcrete Strength using ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction.

  • PDF

Transpiration Prediction of Sweet Peppers Hydroponically-grown in Soilless Culture via Artificial Neural Network Using Environmental Factors in Greenhouse (온실의 환경요인을 이용한 인공신경망 기반 수경 재배 파프리카의 증산량 추정)

  • Nam, Du Sung;Lee, Joon Woo;Moon, Tae Won;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.411-417
    • /
    • 2017
  • Environmental and growth factors such as light intensity, vapor pressure deficit, and leaf area index are important variables that can change the transpiration rate of plants. The objective of this study was to compare the transpiration rates estimated by modified Penman-Monteith model and artificial neural network. The transpiration rate of paprika (Capsicum annuum L. cv. Fiesta) was obtained by using the change in substrate weight measured by load cells. Radiation, temperature, relative humidity, and substrate weight were collected every min for 2 months. Since the transpiration rate cannot be accurately estimated with linear equations, a modified Penman-Monteith equation using compensated radiation (Shin et al., 2014) was used. On the other hand, ANN was applied to estimating the transpiration rate. For this purpose, an ANN composed of an input layer using radiation, temperature, relative humidity, leaf area index, and time as input factors and five hidden layers was constructed. The number of perceptons in each hidden layer was 512, which showed the highest accuracy. As a result of validation, $R^2$ values of the modified model and ANN were 0.82 and 0.94, respectively. Therefore, it is concluded that the ANN can estimate the transpiration rate more accurately than the modified model and can be applied to the efficient irrigation strategy in soilless cultures.

Optimal Solution of Classification (Prediction) Problem

  • Mohammad S. Khrisat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.129-133
    • /
    • 2023
  • Classification or prediction problem is how to solve it using a specific feature to obtain the predicted class. A wheat seeds specifications 4 3 classes of seeds will be used in a prediction process. A multi linear regression will be built, and a prediction error ratio will be calculated. To enhance the prediction ratio an ANN model will be built and trained. The obtained results will be examined to show how to make a prediction tool capable to compute a predicted class number very close to the target class number.

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

Estimating Strain Rate Dependent Parameters of Cowper-Symonds Model Using Electrohydraulic Forming and Artificial Neural Network (액중 방전 성형과 인공신경망 기법을 활용한 Cowper-Symonds 구성 방정식의 변형률 속도 파라메터 역추정)

  • Byun, H.B.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2022
  • Numerical analysis and dynamic material properties are required to analyze the behavior of workpiece during an electrohydraulic forming (EHF) process. In this study, EHF experiments were conducted under three conditions (6, 7, 8 kV). Dynamic material properties of Al 5052-H34 were inversely estimated through an ANN (Artificial Neural Network) model constructed based on LS-Dyna analysis results. Parameters of Cowper-Symonds constitutive equation, C and p, were used to implement dynamic material properties. By comparing experimental results of three conditions with ANN model results, optimized parameters were obtained. To determine the reliability of the derived parameters, experimental results, LS-Dyna analysis results, and ANN results of three conditions were compared using MSE and SMAPE. Valid parameters were obtained because values of indicators were within confidence intervals.

Estimation of Surface Runoff from Paddy Plots using an Artificial Neural Network (인공신경망 기법을 이용한 논에서의 지표 유출량 산정)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Song, Jeong-Heon;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of this study was to estimate surface runoff from rice paddy plots using an artificial neural network (ANN). A field experiment with three treatment levels was conducted in the NICS saemangum experimental field located in Iksan, Korea. The ANN model with the optimal network architectures, named Paddy1901 with 19 input nodes, 1 hidden layer with 16 neurons nodes, and 1 output node, was adopted to predict surface runoff from the plots. The model consisted of 7 parameters of precipitation, irrigation rate, ponding depth, average temperature, relative humidity, wind speed, and solar radiation on the daily basis. Daily runoff, as the target simulation value, was computed using a water balance equation. The field data collected in 2011 were used for training and validation of the model. The model was trained based on the error back propagation algorithm with sigmoid activation function. Simulation results for the independent training and testing data series showed that the model can perform well in simulating surface runoff from the study plots. The developed model has a main advantage that there is no requirement for any prior assumptions regarding the processes involved. ANN model thus can be a good tool to predict surface runoff from rice paddy fields.

Development of Wastewater Treatment Process Simulators Based on Artificial Neural Network and Mass Balance Models (인공신경망 및 물질수지 모델을 활용한 하수처리 프로세스 시뮬레이터 구축)

  • Kim, Jungruyl;Lee, Jaehyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.427-436
    • /
    • 2015
  • Developing two process models to simulate wastewater treatment process is needed to draw a comparison between measured BOD data and estimated process model data: a mathematical model based on the process mass-balance and an ANN (artificial neural network) model. Those two types of simulator can fit well in terms of effluent BOD data, which models are formulated based on the distinctive five parameters: influent flow rate, effluent flow rate, influent BOD concentration, biomass concentration, and returned sludge percentage. The structuralized mass-balance model and ANN modeI with seasonal periods can estimate data set more precisely, and changing optimization algorithm for the penalty could be a useful option to tune up the process behavior estimations. An complex model such as ANN model coupled with mass-balance equation will be required to simulate process dynamics more accurately.