• Title/Summary/Keyword: AMP-activated protein kinase(AMPK)

Search Result 192, Processing Time 0.02 seconds

Conjugated Linoleic Acid Induces Apoptosis by Activating AMPK in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포에서 AMPK 활성에 의한 conjugated linoleic acid의 apoptosis 유도에 관한 연구)

  • Lin, Sun-Kyo;Kim, Hyun-Sook;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1679-1685
    • /
    • 2008
  • Conjugated linoleic acid (CLA) is a naturally occurring compound found in dairy and beef products. It has been shown to suppress cancer cells and to induce apoptosis. Practically, there is emerging evidence that CLA can inhibit chemically induced carcinogenesis in various tissues. However, the molecular mechanisms of CLA on human MCF-7 breast cancer cells have not been clearly explained yet. In this report, we investigated the anti-cancer activity of CLA in MCF-7 cells. It was found that CLA could inhibit the growth of the MCF-7 cells and induce apoptosis, through modulating AMP-activated protein kinase (AMPK) and cyclooxygenase-2 (COX-2). AMPK acts as a cellular fuel gauge and responds to decreased cellular energy status by inhibiting ATP-consuming pathways and increasing ATP-synthesis. CLA treatment with variable concentrations and different time of same-dose CLA on MCF-7 cells resulted in a strong activation of AMPK and an inhibition of COX-2 expression. It supports that CLA induces apoptosis in CLA-treated MCF 7 cells. Therefore, the effects of CLA induced COX-2 expression via activating AMPK can provide new possibility into the understanding the molecular mechanisms of anti-cancer component.

Strongylocentrotus intermedius Extract Suppresses Adiposity by Inhibiting Adipogenesis and Promoting Adipocyte Browning via AMPK Activation in 3T3-L1 Cells

  • Lakshi A. Dayarathne;Jasmadi;Seok-Chun Ko;Mi-Jin Yim;Jeong Min Lee;Ji-Yul Kim;Gun-Woo Oh;Dae-Sung Lee;Won-Kyo Jung;Sei-Jung Lee;Jae-Young Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1688-1697
    • /
    • 2024
  • The current study aimed to determine whether Strongylocentrotus intermedius (S. intermedius) extract (SIE) exerts anti-obesity potentials employing 3T3-L1 cells as in vitro model. Herein we reported that treatment of SIE for 6 days reduced lipid accretion and triglyceride content whereas it increased the release of free glycerol. The inhibited lipid accumulation and induced lipolysis were evidenced by the downregulation of lipogenesis proteins, such as fatty acid synthase and lipoprotein lipase, and the upregulation of hormone-sensitive lipase expression. Furthermore, the downregulation of adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein α, and sterol regulatory element-binding protein 1, highlights that reduced lipid accumulation is supported by lowering adipocyte differentiation. Additionally, treatment activates brown adipocyte phenotype in 3T3-L1 cells by inducing expression of brown adipose tissue-specific proteins, such as uncoupling protein 1 and peroxisome proliferator-activated receptor-γ coactivator 1α. Moreover, SIE induced the phosphorylation of AMP-activated protein kinase (AMPK). The pharmacological approach using AMPK inhibitor revealed that the restraining effect of SIE on adipogenesis and promotion of adipocyte browning were blocked. In GC-MS analysis, SIE was mainly composed of cholest-5-en-3-ol (36.71%) along with saturated and unsaturated fatty acids which have favorable anti-obesity potentials. These results reveal that SIE has the possibility as a lipid-lowering agent for the intervention of obesity.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Effect of Prunellae Spica on Oxidative Stress and Mitochondrial Dysfunction in the Hepatocyte (하고초(夏枯草)의 간세포에서 항산화 및 미토콘드리아 보호효과)

  • Jang, Mihee;Seo, Hye Lim;Kim, Sang Chan;Kim, Young Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • Prunellae Spica, the herbaceous plant in the genus Prunella, is a traditional herbal medicine and has been reported to have diuretic, anti-bacterial and anti-oxidant effects. However, the mechanism of its action was not clearly identified. In the present study, we investigated the hepatoprotective effect of Prunellae Spica extract (PSE) against the damage of mitochondria and death in hepatocyte induced by oxidative stress. Treatment of arachidonic acid (AA)+iron significantly induced oxidative stress and apoptosis in the hepatocytes. However, PSE protected cells and inhibited apoptosis by altering the protein levels such as poly(ADP-ribose) polymerase and pro-caspase 3. Moreover, AA+iron induced reactive oxygen species production and mitochondrial dysfunction, and Both of them were inhibited by PSE treatment. PSE markedly activated AMP-activated protein kinase (AMPK), an important regulator in cell survival. Furthermore, this activation by PSE was mediated with liver kinase B1, a major upstream kinase that phosphorylates Thr 172 of AMPKα, and this activation was associated with its cell protection, as assessed by an experiment of a chemical inhibitor. In conclusion, this study demonstrate that PSE protects hepatocytes against oxidative stress as mediated with activation of LKB1-dependent AMPK pathway.

Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

  • Yang, Jung Yoon;Park, Min Young;Park, Sam Young;Yoo, Hong Il;Kim, Min Seok;Kim, Jae Hyung;Kim, Won Jae;Jung, Ji Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells.

Protective effects of Cirsium setidens ethanolic extracts against alcoholic fatty liver injury in rats (곤드레 (Cirsium setidens) 에탄올 추출물의 알코올성 지방간 손상 억제 효과)

  • Kim, Eun-Hye;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.420-428
    • /
    • 2016
  • Purpose: In this study, we investigated the effects of Cirsium setidens ethanolic extract (CS) on the development of alcoholic fatty liver and associated injury. Methods: Sprague-Dawley male rats were fed either Lieber-DeCarli control (C) or ethanol (35.5% of total calories) liquid diet with 0 (E), 100 mg/kgBW CS (E+LCS), or 500 mg/kgBW CS (E+HCS) for 8 weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities as well as TG and cholesterol concentrations in the serum and liver tissues were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. Protein levels of phosphorylated-AMP activated protein kinase (p-AMPK), phosphorylated-acetyl CoA carboxylase (p-ACC), phosphorylated-nuclear factor kappa B (p-$NF{\kappa}B$), and $TNF{\alpha}$ were measured by Western blot analyses. Results: Both doses of CS markedly suppressed alcohol-induced lipid droplets accumulation in the liver tissues and significantly inhibited alcohol-induced increases in activities of serum ALT and serum AST. Similarly, CS significantly reduced hepatic and serum TG concentrations. Compared to groups fed alcohol only, CS supplementation strongly increased hepatic levels of p-AMPK and p-ACC. Further, CS significantly inhibited alcohol-induced phosphorylation of $NF{\kappa}B$, which was associated with reduced hepatic protein levels of $TNF{\alpha}$. Conclusion: Our data demonstrated that CS has a protective effect against alcoholic liver injury, which was associated with activation of AMPK and inhibition of $NF{\kappa}B$.

AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside) Decreases Protein Synthesis in C2C12 Myotubes Cultured in High Glucose Media (근육세포 내 Glucose 농도와 AICAR에 의한 단백질 합성 저해)

  • Park, Chang-Seok;Kim, Jae-Hwan;Oh, Young-Kyoon;Kim, Kyoung-Hoon;Choi, Chang-Weon;Cho, Eun-Seok;Jeong, Yong-Dae;Park, Sung-Kwon
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.369-373
    • /
    • 2012
  • AMP-activated protein kinase (AMPK) maintains energy homeostasis in skeletal muscle. Nonetheless, its functional role on protein synthesis with different nutrient availability has not been elucidated. Therefore, the purpose of this study is to examine the effect of AMPK activity on protein content in C2C12 myotubes incubated with low (5 mM; LG) or high (25 mM; HG) glucose media. LG stimulated (p<0.05) AMPK and acetyl CoA carboxylase (ACC) activity compare to those in HG group. Total protein content was higher in myotubes cultured with HG than in those cultured with LG and further increased by AICAR (5-amino-1-${\beta}$-D-ribofuranosyl-imidazole-4-carboxamide). Myotubes cultured with HG showed 7.5% lower UbFL (Ubiquitin Firefly Luciferase)-to-SV40 (Simian virus40) ratio compared to those in LG. Glucose level did not change the phosphorylation level of mammalian target of rapamycin (mTOR). Interestingly, administration of AICAR significantly increased phosphorylation level of mTOR in myotubes cultured with LG but not in those with HG. Overall, this data indicate that AMPK activity and protein turnover are finely regulated in response to different glucose concentration.

Pectinase-Processed Ginseng Radix (GINST) Ameliorates Hyperglycemia and Hyperlipidemia in High Fat Diet-Fed ICR Mice

  • Yuan, Hai-Dan;Kim, Jung-Tae;Chung, Sung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.220-225
    • /
    • 2012
  • To develop a ginseng product possessing an efficacy for diabetes, ginseng radix ethanol extract was treated with pectinase and obtained the GINST. In the present study, we evaluate the beneficial effect of GINST on high fat diet (HFD)-induced hyperglycemia and hyperlipidemia and action mechanism(s) in ICR mice. The mice were randomly divided into five groups: regular diet group (RD), high fat diet group (HFD), HFD plus GINST at 75 mg/kg (GINST75), 150 mg/kg (GINST150), and 300 mg/kg (GINST300). Oral glucose tolerance test reveals that GINST improves the glucose tolerance after glucose challenge. Fasting plasma glucose and insulin levels were decreased by 4.3% and 4.2% in GINST75, 10.9% and 20.0% in GINST150, and 19.6% and 20.9% in GINST300 compared to those in HFD control group. Insulin resistance indices were also markedly decreased by 8.2% in GINST75, 28.7% in GINST150, and 36.4% in GINST300, compared to the HFD control group. Plasma triglyceride, total cholesterol and non-esterified fatty acid levels in the GINST300 group were decreased by 13.5%, 22.7% and 24.1%, respectively, compared to those in HFD control group. Enlarged adipocytes of HFD control group were markedly decreased in GINST-treated groups, and shrunken islets of HFD control mice were brought back to near normal shape in GINST300 group. Furthermore, GINST enhanced phosphorylation of AMP-activated protein kinase (AMPK) and glucose transporter 4 (GLUT4). In summary, GINST prevents HFD-induced hyperglycemia and hyperlipidemia through reducing insulin resistance via activating AMPK-GLUT4 pathways, and could be a potential therapeutic agent for type 2 diabetes.

Ginseng Leaf Extract Prevents High Fat Diet-Induced Hyperglycemia and Hyperlipidemia through AMPK Activation

  • Yuan, Hai-Dan;Kim, Sung-Jip;Quan, Hai-Yan;Huang, Bo;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • This study evaluated the protective effects of ginseng leaf extract (GLE) against high fat-diet-induced hyperglycemia and hyperlipidemia, and explored the potential mechanism underlying these effects in C57BL/6J mice. The mice were randomly divided into four groups: normal control, high fat diet control (HFD), GLE-treated at 250 mg/kg, and GLE-treated at 500 mg/kg. To induce hyperglycemic and hyperlipidemic states, mice were fed a high fat diet for 6 weeks and then administered GLE once daily for 8 weeks. At the end of the treatment, we examined the effects of GLE on plasma glucose, lipid levels, and the expression of genes related to lipogenesis, lipolysis, and gluconeogenesis. Both GLE groups lowered levels of plasma glucose, insulin, triglycerides, total cholesterol, and non-esterified fatty acids when compared to those in HFD group. Histological analysis revealed significantly fewer lipid droplets in the livers of GLE-treated mice compared with HFD mice. To elucidate the mechanism, Western blots and RT-PCR were performed using liver tissue. Compared with HFD mice, GLE-treated mice showed higher levels of phosphorylation of AMP-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase, but no differences in the expression of lipogenic genes such as sterol regulatory element-binding protein 1a, fatty acid synthase, sterol-CoA desaturase 1 and glycerol-3-phosphate acyltransferase. However, the expression levels of lipolysis and fatty acid uptake genes such as peroxisome proliferator-activated receptor-$\alpha$ and CD36 were increased. In addition, phosphoenolpyruvate carboxykinase gene expression was decreased. These results suggest that GLE ameliorates hyperglycemia and hyperlipidemia by inhibiting gluconeogenesis and stimulating lipolysis, respectively, via AMPK activation.

Inhibition of Adipocyte Differentiation by Anthocyanins Isolated from the Fruit of Vitis coignetiae Pulliat is Associated with the Activation of AMPK Signaling Pathway

  • Han, Min Ho;Kim, Hong Jae;Jeong, Jin-Woo;Park, Cheol;Kim, Byung Woo;Choi, Yung Hyun
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • Anthocyanins are naturally occurring water-soluble polyphenolic pigments in plants that have been shown to protect against cardiovascular diseases, and certain cancers, as well as other chronic human disorders. However, the anti-obesity effects of anthocyanins are not fully understood. In this study, we investigated the effects of anthocyanins isolated from the fruit of Vitis coignetiae Pulliat on the adipogenesis of 3T3-L1 preadipocytes. Our data indicated that anthocyanins attenuated the terminal differentiation of 3T3-L1 preadipocytes, as confirmed by a decrease in the number of lipid droplets, lipid content, and triglyceride production. During this process, anthocyanins effectively enhanced the activation of the AMP-activated protein kinase (AMPK); however, this phenomenon was inhibited by the co-treatment of compound C, an inhibitor of AMPK. Anthocyanins also inhibited the expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-${\gamma}$, CCAAT/enhancer-binding protein a and b, and sterol regulatory element-binding protein-1c. In addition, anthocyanins were found to potently inhibit the expression of adipocyte-specific genes, including adipocyte fatty acid-binding protein, leptin, and fatty acid synthase. These results indicate that anthocyanins have potent anti-obesity effects due to the inhibition of adipocyte differentiation and adipogenesis, and thus may have applications as a potential source for an anti-obesity functional food agent.