• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.027 seconds

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

Improvement and Evaluation of Emission Formulas in UM-CMAQ-Pollen Model (UM-CMAQ-Pollen 모델의 참나무 꽃가루 배출량 산정식 개선과 예측성능 평가)

  • Kim, Tae-Hee;Seo, Yun Am;Kim, Kyu Rang;Cho, Changbum;Han, Mae Ja
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • For the allergy patient who needs to know the situation about the extent of pollen risk, the National Institute of Meteorological Sciences developed a pollen forecasting system based on the Community Multiscale Air Quality Modeling (CMAQ). In the old system, pollen emission from the oak was estimated just based on the airborne concentration and meteorology factors, resulted in high uncertainty. For improving the quality of current pollen forecasting system, therefore the estimation of pollen emission is now corrected based on the observation of pollen emission at the oak forest to better reflect the real emission pattern. In this study, the performance of the previous (NIMS2014) and current (NIMS2016) model system was compared using observed oak pollen concentration. Daily pollen concentrations and emissions were simulated in pollen season 2016 and accuracy of onset and end of pollen season were evaluated. In the NIMS2014 model, pollen season was longer than actual pollen season; The simulated pollen season started 6 days earlier and finished 13.25 days later than the actual pollen season. The NIMS2016 model, however, the simulated pollen season started only 1.83 days later, and finished 0.25 days later than the actual pollen season, showing the improvement to predict the temporal range of pollen events. Also, the NIMS2016 model shows better performance for the prediction of pollen concentration, while there is a still large uncertainty to capture the maximum pollen concentration at the target site. Continuous efforts to correct these problems will be required in the future.

Person-centered Approach to Organizational Commitment: Analyses of Korean Employees' Commitment Profiles (조직몰입에 대한 사람중심 접근: 국내 직장인들의 조직몰입 프로파일 분석)

  • Oh, Hyun-Sung;Jung, Yongsuhk;Kim, Woo-Seok
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.3049-3067
    • /
    • 2018
  • Although there is a growing body of research on organizational commitment profiles based on a person-centered approach, it is not widely applied to the commitment research conducted by Korean organizational scholars yet. Therefore, in this paper, we introduced the concept and analytical methods, such as cluster analysis and latent profile analysis (LPA), of the person-centered approach. In addition, we also performed both cluster analysis and LPA to identify types of organizational commitment profiles of Korean employees based on the combination of affective, continuance and normative commitment on the sample from a range of different fields in South Korea (n = 349). Both analyses extracted two comparable sets of 6 commitment profiles. These six profiles were then contrasted with employee turnover intention. Finally, implications for commitment theory, practices and future research issues were discussed.

An Interpretation of Soil Water Retention Curves of Weathered Soils Using Micro-Membrane (마이크로 멤브레인을 이용한 풍화토의 함수특성곡선 분석)

  • Oh, Seboong;Kim, Seongjin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.17-27
    • /
    • 2021
  • It takes a long period to conduct the test on soil water retention curve (SWRC) in unsaturated soils. To improve such a problem, the high air entry disk has been replaced by micro-membrane. After the soil water retention test, the results by the micro-membrane were compared with those by the ceramic disk. Multiple samples in 5 regions were used to validate that SWRCs by micro-membrane are equivalent to those by ceramic disk. Therefore, a quick procedure based on micro-membrane has been developed, which makes it available to acquire much soil water retention data. The data of SWRCs were obtained for total 29 samples using ceramic disk or micro-membrane. For Korean weathered soils, the unsaturated hydraulic characteristics are sorted by three groups. Based on van Genuchten model, the group is divided by the parameter n, and the value of n could be correlated to the void ratio as each function.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

A Study on the TV Audition Show's Distortion of Reality with Sartre's Existentialism which shows Media Subjectivity and Ethicality (오디션 프로그램의 리얼리티 왜곡이 보여주는 미디어의 주관성과 윤리성)

  • Tu, Lingyao
    • Trans-
    • /
    • v.11
    • /
    • pp.1-35
    • /
    • 2021
  • This study looks to explore situations in which the authenticity of reality audition programs is inherently distorted by subjective intervention through a theoretical model of existentialism and case study of how it was practiced in an actual program. In detail, we examine the impact on the essence of human subjective intervention and the behavior by free will and use Sartre's existentialism a theoretical model and a Korean audition program series as the case for the study. We believe that the producers intended to narrow the audiences choices by creating a favorable environments for certain participants (trainees as they were called) to be recognized and liked by the voting audiences. We look to "subjectivity," the first principle of existentialism, people determine their essence through free will, and all actions in the production process are aimed at achieving that goal, which keeps the position balance of final debut group by creating the character image and personality through character making, storytelling and increasing or decrease the assigned air-time of each individuals.

Development of Numerical Analysis Model for the Calculation of Thermal Conductivity of Thermo-syphon (열 사이펀의 열전도율 산정을 위한 수치해석 모델 개발)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The areas consisting of frost susceptible soils in cold regions, such as the Arctic area, have problems of frost heave and thaw settlement due to the seasonal air temperature changes and internal temperature of installed structures. Ground stabilization methods for preventing frost heave and thaw settlement of frost susceptible soils include trenching, backfilling and thermo-syphon. The thermo-syphon is the method in which refrigerant can control the ground temperature by transferring the ground temperature to atmosphere in the from of two-phase flow through the heat circulation of the internal refrigerant. This numerical study applied the function of these thermo-syphon as the boundary condition through user-subroutine coding inside ABAQUS and compared and analyzed the temperature results of laboratory experiments.

CBT Combustion Precise Modeling and Analysis Using VOF and FSI Methods (VOF와 FSI 방법을 적용한 CBT 연소 정밀 모델링 및 해석)

  • Jeongseok Kang;Jonggeun Park;Hong-Gye Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.35-43
    • /
    • 2022
  • Precise modeling and analysis of closed bomb test(CBT) combustion using solid propellants was performed. The fluid structure interaction(FSI) method was implemented to analyze the gas and solid phases at the same time. The Eulerian analysis method was applied for the gas phase and grain combustion, and the Lagrangian analysis method was implemented for the grain movement. The interaction between the solid phase grains and the combustion gas was fully coupled through the source term. The volume of fluid(VOF) method was used to simulate the burning distance of the grain and the movement of the combustion surface. The force acting on the grain was comprised of the pressure and gravity acting on the grain burning surface, and the grain burning rate and grain movement speed were considered in the velocity term of the VOF. The combustion analysis was performed for both one and three grains, and fairly compared with the experiments. The acoustic field during grain combustion due to pressure fluctuations was also analyzed.

A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System (Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구)

  • Hong Dae Gi
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.18-27
    • /
    • 2023
  • In this paper, the structural-thermal-optical performance analysis of the mirror was performed by setting the laser heat source as the boundary condition of the thermal analysis. For the laser heat source model, the Beer-Lambert model considering semi-transparent optical material based on Gaussian beam was selected as the boundary condition, and the mechanical part was not considered, to analyze the performance of only the mirror. As a result of the thermal analysis, thermal stress and thermal deformation data due to temperature change on the surface of the mirror were obtained. The displacement data of the surface due to thermal deformation was fitted to a Zernike polynomial to calculate the optical performance, through which the performance of the mirror when a high-energy laser was incident on the mirror could be predicted.

Implementation of Human Positioning Monitoring Device for Underwater Safety (수중안전을 위한 인체 위치추적 모니터링 장치 구현)

  • Jong-Hwa Yoon;Dal-Hwan Yoon
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.225-233
    • /
    • 2023
  • This paper implements a system that monitors human body lifting information in the event of a marine accident. The monitoring system performs ultrasonic communication through a lifting device controller that transmits underwater environment information, and LoRa communication is performed on the water to provide GPS information within 10 km to the control center or mother ship. The underwater lifting controller transmits pneumatic sensor, gyro sensor, and temperature sensor information. In an environment where the underwater conditions increase by one atmosphere of water pressure every 10m in depth, and the amount of air in the instrument decreases by half compared to land, a model of a 60kg underwater mannequin is used. Using one 38g CO2 cartridge in the lifting appliance SMB(Surface Maker Buoy), carry out a lifting appliance discharge test based on the water level rise conditions within 10 sec. Underwater communication constitutes a data transmission environment using a 2,400-bps ultrasonic sensor from a depth of 40m to 100m. The monitoring signal aims to ensure the safety and safe human structure of the salvage worker by providing water depth, water temperature, and directional angle to rescue workers on the surface of the water.