• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.031 seconds

Smart Livestock Research and Technology Trend Analysis based on Intelligent Information Technology to improve Livestock Productivity and Livestock Environment (축산물 생산성 향상 및 축산 환경 개선을 위한 지능정보기술 기반 스마트 축사 연구 및 기술 동향 분석)

  • Kim, Cheol-Rim;Kim, Seungchoen
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.133-139
    • /
    • 2022
  • Recently, livestock farms in Korea are introducing data-based technologies to improve productivity, such as livestock environment and breeding management, safe livestock production, and animal welfare. In addition, the government has been conducting a smart livestock distribution project since 2017 through the modernization of ICT-based livestock facilities in order to improve the productivity of livestock products and improve the livestock environment as a policy. However, the current smart livestock house has limitations in connection, diversity, and integration between monitoring and control. Therefore, in order to intelligently systemize all processes of livestock with intelligent algorithms and remote control in order to link and integrate various monitoring and control, the Internet of Things, big data, artificial intelligence, cloud computing, and mobile It is necessary to develop a smart livestock system. In this study, domestic and foreign research trends related to smart livestock based on intelligent information technology were introduced and the limitations of domestic application of advanced technologies were analyzed. Finally, future intelligent information technology applicable to the livestock field was examined.

Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments (AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.250-252
    • /
    • 2022
  • Recently, with the development of IoT technology and AI, unmanned and automated systems are progressing in various fields, and various application technologies are being studied in systems using algorithms such as object detection, recognition, and tracking. In the case of a system operating based on an image, noise removal is performed as a pre-processing process, and precise noise removal is sometimes required depending on the environment of the system. In this paper, we propose a modified central weight filter algorithm using pixel division of local regions to minimize the blurring that tends to occur in the filtering process and to emphasize the details of the resulting image. In the proposed algorithm, when a pixel of a local area is divided into two areas, the center of the dominant area among the divided areas is set as a criterion for the weight filter algorithm. The resulting image is calculated by convolving the transformed center weight with the pixel value inside the filtering mask.

  • PDF

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

Compensation for Distorted WDM Signals by Periodic-shaped Dispersion Map and Non-midway Optical Phase Conjugator (주기적 구조의 분산 맵과 Non-midway 광 위상 공액기에 의한 왜곡된 WDM 신호의 보상)

  • Kweon, Soon-Nyu;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • In order to install ultra wide band and ultra long-haul transmission link based on standard single mode fiber, optical signal distortion due to chromatic dispersion and nonlinear Kerr effect must to be compensated. In this paper, optical link consisted of dispersion management and optical phase conjugation is proposed for compensation of the distorted wavelength division multiplexed (WDM) channels. Dispersion map profile in the proposed dispersion-managed link is configured by periodic repetitive shape, and optical phase conjugator is placed at various position including the midway of total transmission length. It is confirmed from simulation results that when the residual dispersion per span (RDPS) selected in the proposed dispersion-managed link to be large, the compensation of distorted WDM channels in the non-midway OPC system is more improved than the conventional dispersion-managed link.

The Design of Digital Human Content Creation System (디지털 휴먼 컨텐츠 생성 시스템의 설계)

  • Lee, Sang-Yoon;Lee, Dae-Sik;You, Young-Mo;Lee, Kye-Hun;You, Hyeon-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.271-282
    • /
    • 2022
  • In this paper, we propose a digital human content creation system. The digital human content creation system works with 3D AI modeling through whole-body scanning, and is produced with 3D modeling post-processing, texturing, rigging. By combining this with virtual reality(VR) content information, natural motion of the virtual model can be achieved in virtual reality, and digital human content can be efficiently created in one system. Therefore, there is an effect of enabling the creation of virtual reality-based digital human content that minimizes resources. In addition, it is intended to provide an automated pre-processing process that does not require a pre-processing process for 3D modeling and texturing by humans, and to provide a technology for efficiently managing various digital human contents. In particular, since the pre-processing process such as 3D modeling and texturing to construct a virtual model are automatically performed by artificial intelligence, so it has the advantage that rapid and efficient virtual model configuration can be achieved. In addition, it has the advantage of being able to easily organize and manage digital human contents through signature motion.

Smart Factory Activation Plan through Analysis of Smart Factory Promotion Status and Introduction Plan Data

  • Seong-Hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.229-234
    • /
    • 2024
  • A smart factory is defined as a cutting-edge, intelligent factory that integrates all production processes from product planning to sales with information and communication technology. Through these factories, each company produces customized products with minimal cost and time. The smart factory promotion project in Korea has produced positive results even in difficult environments such as the COVID-19 situation. Through the transition to a smart manufacturing production system, the competitiveness of small and medium-sized businesses has been greatly strengthened, including increased productivity and reduced costs. This study was based on surveyed data conducted by organizations related to smart factory promotion in 2020. Significant contents and major characteristics that emerged from the surveyed data were inferred and described. Since the meaningful contents reflect the reality of the company, more efficient promotion of smart factories will be possible in the future.

Technology Trends of Smart Abnormal Detection and Diagnosis System for Gas and Hydrogen Facilities (가스·수소 시설의 스마트 이상감지 및 진단 시스템 기술동향)

  • Park, Myeongnam;Kim, Byungkwon;Hong, Gi Hoon;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.41-57
    • /
    • 2022
  • The global demand for carbon neutrality in response to climate change is in a situation where it is necessary to prepare countermeasures for carbon trade barriers for some countries, including Korea, which is classified as an export-led economic structure and greenhouse gas exporter. Therefore, digital transformation, which is one of the predictable ways for the carbon-neutral transition model to be applied, should be introduced early. By applying digital technology to industrial gas manufacturing facilities used in one of the major industries, high-tech manufacturing industry, and hydrogen gas facilities, which are emerging as eco-friendly energy, abnormal detection, and diagnosis services are provided with cloud-based predictive diagnosis monitoring technology including operating knowledge. Here are the trends. Small and medium-sized companies that are in the blind spot of carbon-neutral implementation by confirming the direction of abnormal diagnosis predictive monitoring through optimization, augmented reality technology, IoT and AI knowledge inference, etc., rather than simply monitoring real-time facility status It can be seen that it is possible to disseminate technologies such as consensus knowledge in the engineering domain and predictive diagnostic monitoring that match the economic feasibility and efficiency of the technology. It is hoped that it will be used as a way to seek countermeasures against carbon emission trade barriers based on the highest level of ICT technology.

Development of Artificial Intelligence Janggi Game based on Machine Learning Algorithm (기계학습 알고리즘 기반의 인공지능 장기 게임 개발)

  • Jang, Myeonggyu;Kim, Youngho;Min, Dongyeop;Park, Kihyeon;Lee, Seungsoo;Woo, Chongwoo
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.137-148
    • /
    • 2017
  • Researches on the Artificial Intelligence has been explosively activated in various fields since the advent of AlphaGo. Particularly, researchers on the application of multi-layer neural network such as deep learning, and various machine learning algorithms are being focused actively. In this paper, we described a development of an artificial intelligence Janggi game based on reinforcement learning algorithm and MCTS (Monte Carlo Tree Search) algorithm with accumulated game data. The previous artificial intelligence games are mostly developed based on mini-max algorithm, which depends only on the results of the tree search algorithms. They cannot use of the real data from the games experts, nor cannot enhance the performance by learning. In this paper, we suggest our approach to overcome those limitations as follows. First, we collects Janggi expert's game data, which can reflect abundant real game results. Second, we create a graph structure by using the game data, which can remove redundant movement. And third, we apply the reinforcement learning algorithm and MCTS algorithm to select the best next move. In addition, the learned graph is stored by object serialization method to provide continuity of the game. The experiment of this study is done with two different types as follows. First, our system is confronted with other AI based system that is currently being served on the internet. Second, our system confronted with some Janggi experts who have winning records of more than 50%. Experimental results show that the rate of our system is significantly higher.

An Accuracy Assessment Scheme through Entropy Analysis in BLE-based Indoor Positioning Systems (BLE 기반 실내 측위 시스템에서 엔트로피 분석을 통한 정확도 평가 기법)

  • Pi, Kyung-Joon;Min, Hong;Han, Kyoungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.117-123
    • /
    • 2022
  • Unlike the satellite-based outdoor positioning system, the indoor positioning system utilizes various wireless technologies such as BLE, Wi-Fi, and UWB. BLE-based beacon technology can measure the user's location by periodically broadcasting predefined device ID and location information and using RSSI from the receiving device. Existing BLE-based indoor positioning system studies have many studies comparing the error between the user's actual location and the estimated location at a single point. In this paper, we propose a technique to evaluate the positioning accuracy according to the movement path or area by applying the entropy analysis model. In addition, simulation results show that calculated entropy results for different paths can be compared to assess which path is more accurate.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF