• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.024 seconds

KANO-TOPSIS Model for AI Based New Product Development: Focusing on the Case of Developing Voice Assistant System for Vehicles (KANO-TOPSIS 모델을 이용한 지능형 신제품 개발: 차량용 음성비서 시스템 개발 사례)

  • Yang, Sungmin;Tak, Junhyuk;Kwon, Donghwan;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.287-310
    • /
    • 2022
  • Companies' interest in developing AI-based intelligent new products is increasing. Recently, the main concern of companies is to innovate customer experience and create new values by developing new products through the effective use of Artificial intelligence technology. However, due to the nature of products based on radical technologies such as artificial intelligence, intelligent products differ from existing products and development methods, so it is clear that there is a limitation to applying the existing development methodology as it is. This study proposes a new research method based on KANO-TOPSIS for the successful development of AI-based intelligent new products by using car voice assistants as an example. Using the KANO model, select and evaluate functions that customers think are necessary for new products, and use the TOPSIS method to derives priorities by finding the importance of functions that customers need. For the analysis, major categories such as vehicle condition check and function control elements, driving-related elements, characteristics of voice assistant itself, infotainment elements, and daily life support elements were selected and customer demand attributes were subdivided. As a result of the analysis, high recognition accuracy should be considered as a top priority in the development of car voice assistants. Infotainment elements that provide customized content based on driver's biometric information and usage habits showed lower priorities than expected, while functions related to driver safety such as vehicle condition notification, driving assistance, and security, also showed as the functions that should be developed preferentially. This study is meaningful in that it presented a new product development methodology suitable for the characteristics of AI-based intelligent new products with innovative characteristics through an excellent model combining KANO and TOPSIS.

Performance Comparison According to Image Generation Method in NIDS (Network Intrusion Detection System) using CNN

  • Sang Hyun, Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.67-75
    • /
    • 2023
  • Recently, many studies have been conducted on ways to utilize AI technology in NIDS (Network Intrusion Detection System). In particular, CNN-based NIDS generally shows excellent performance. CNN is basically a method of using correlation between pixels existing in an image. Therefore, the method of generating an image is very important in CNN. In this paper, the performance comparison of CNN-based NIDS according to the image generation method was performed. The image generation methods used in the experiment are a direct conversion method and a one-hot encoding based method. As a result of the experiment, the performance of NIDS was different depending on the image generation method. In particular, it was confirmed that the method combining the direct conversion method and the one-hot encoding based method proposed in this paper showed the best performance.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

Development of multi-media multi-path Optimization Network Technology Using RNN Algorithm (RNN 알고리즘을 이용한 다매체 다중경로 최적화 네트워크 기술 개발)

  • Pokki Park;Youngdong Kim
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.95-104
    • /
    • 2024
  • The performance capability of the future battlefield depends on whether the next-generation technology of the Fourth Industrial Revolution, called ABCMS (AI, Bigdata, Cloud, Mobile, Security), can be applied to secure innovative defense capabilities It is no exaggeration to say. In addition, the future military operation environment is rapidly changing into a net work-oriented war (NCW) in which all weapon systems mutually share battlefield information and operate in real-time within a single integrated information and communication network based on the network and is expanding to the scope of operation of the manned and unmanned complex combat system. In particular, communication networks responsible for high-speed and hyperconnectivity require high viability and efficiency in power operation based on multi-tier (defense mobile, satellite, M/W, wired) networks for the connection of multiple combat elements and smooth distribution of information. From this point of view, this study is different from conventional single-media, single-path transmission with fixed specifications, It is an artificial intelligence-based transmission technology using RNN (Recurrent Neural Networks) algorithm and load distribution during traffic congestion using available communication wired and wireless infrastructure multimedia simultaneously and It is the development of MMMP-Multi-Media Multi-Path adaptive network technology.

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

Innovative Strategies for Korean Military Personnel Management in the Fourth Industrial Revolution Era: Focusing on AI Technology Adoption and Demographic Changes (4차 산업혁명 시대의 한국군 인력 운영 혁신 방안: AI 기술 도입과 인구구조 변화를 중심으로)

  • Ho-Shin Lee;Kyoung-Haing Lee;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.443-449
    • /
    • 2024
  • This study aims to analyze the complex impact of technological changes in the Fourth Industrial Revolution era and demographic shifts in Korea on military personnel management, and to explore innovative strategies for the Korean military's workforce operations. The research findings indicate that changes in future battlefield environments and the introduction of advanced technologies necessitate a fundamental restructuring of military personnel, emphasizing a shift towards a highly specialized and elite workforce. Key research findings are as follows: First, the military application of cutting-edge technologies, such as unmanned systems, autonomous weapon systems, and AI-based decision support systems, is expanding. Second, this technological advancement requires a restructuring of personnel to foster a technology-intensive elite force, including optimizing troop size, reorganizing unit structures, and increasing the utilization of civilian expertise. Third, strategies for securing high-tech talent include strengthening internal technology talent development programs, establishing systems to attract civilian experts, and building a talent development system through industry-academia-research cooperation. The significance of this study lies in providing a theoretical and practical foundation for building a future-oriented and efficient Korean military organization by presenting innovative measures for military human resource management systems suitable for the Fourth Industrial Revolution era. For these changes to be successfully implemented, cooperation among relevant stakeholders, including the military, government, academia, and industry, is essential, supported by comprehensive national-level planning and support.

From wearing desires to the power of gazing hidden wearable technology algorithm (Based on system design) (웨어러블 기술 알고리즘에 숨겨진 입는 욕망에서부터 시선의 권력까지(시스템 설계 관점에서))

  • Kang, Jangmook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • This paper examines the wearable technology in two aspects. First, it is the desire that permeates the clothes that smart technology is embroidered. Second, it is a reflection on the gaze that looks at the user wearing clothes. This article is a study on clothes that will be newly appeared with wearable technology. But this is not just a technical issue. Rather, it is a system design that takes human instinct into clothes. Therefore, this study encompasses social scientific boundaries. This article does not refer to data collected from wearables as simple sensing based data. Rather, wearable technology reveals human life activities and emotions. This paper is an attempt to combine or combine humanities and technology.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

A Study of Power Line Communication-based Smart Outlet System Expandable at Home

  • Huh, Jun-Ho;Kim, Namjug;Seo, Kyungryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.901-909
    • /
    • 2016
  • Unprecedented attention is being given to Smart Grid, Micro Grid and Internet of Things (IoT) in the Republic of Korea recently but such systems' effect is not well experienced by the market since they require additional and costly reforms for the existing household electrical system where adaptive communication platforms are needed. As such platforms, both wireless and wire communication technologies are being considered at the moment. Usually, they include WiFi, Zigbee technologies and the latter, LAN technology. However, communication speed decline due to signal attenuation and interference during wireless communications are considered to be the major problem and the extra works involving time and costs for the LAN system construction can be another demerit. Therefore, in this paper, we have introduced a Power Line Communication-based Smart Outlet System Expandable at Home to complement these disadvantages. Proposed IoT system involves Power Line Communication (PLC) technology which is essential to constructing a Smart Grid.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.