• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.028 seconds

Real time instruction classification system

  • Sang-Hoon Lee;Dong-Jin Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.212-220
    • /
    • 2024
  • A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.

Interface Establishment between Reinforcement Learning Algorithm and External Analysis Program for AI-based Automation of Bridge Design Process (AI기반 교량설계 프로세스 자동화를 위한 강화학습 알고리즘과 외부 해석프로그램 간 인터페이스 구축)

  • Kim, Minsu;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.403-408
    • /
    • 2021
  • Currently, in the design process of civil structures such as bridges, it is common to make final products by repeating the process of redesigning, if the initial design is found to not meet the standards after a structural review. This iterative process extends the design time, and causes inefficient consumption of engineering manpower, which should be put into higher-level design, on simple repetitive mechanical work. This problem can be resolved by automating the design process, but the external analysis program used in the design process has been the biggest obstacle to such automation. In this study, we constructed an AI-based automation system for the bridge design process, including an interface that could control both a reinforcement learning algorithm, and an external analysis program, to replace the repetitive tasks in the current design process. The prototype of the system built in this study was developed for a 2-span RC Rahmen bridge, which is one of the simplest bridge systems. In the future, it is expected that the developed interface system can be utilized as a basic technology for linking the latest AI with other types of bridge designs.

Improving the Security Policy Based on Data Value for Defense Innovation with Science and Technology (과학기술 중심 국방혁신을 위한 데이터 가치 기반 보안정책 발전 방향)

  • Heungsoon Park
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • The future outlook for defense faces various and challenging environments such as the acceleration of uncertainty in the global security landscape and limitations in domestic social and economic conditions. In response, the Ministry of National Defense seeks to address the problems and threats through defense innovation based on scientific and technological advancements such as artificial intelligence, drones, and robots. To introduce advanced AI-based technology, it is essential to integrate and utilize data on IT environments such as cloud and 5G. However, existing traditional security policies face difficulties in data sharing and utilization due to mainly system-oriented security policies and uniform security measures. This study proposes a paradigm shift to a data value-based security policy based on theoretical background on data valuation and life-cycle management. Through this, it is expected to facilitate the implementation of scientific and technological innovations for national defense based on data-based task activation and new technology introduction.

Implementation of Monitoring System of the Living Waste based on Artificial Intelligence and IoT (AI 및 IoT 기반의 생활 폐기물 모니터링 시스템 구현)

  • Kim, Sang-Hyun;Kang, Young-Hoon;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.302-310
    • /
    • 2020
  • In this paper, we have implemented the living waste analysis system based on IoT and AI(Artificial Intelligence), and proposed effective waste process and management method. The Jeju location have the strong point to devise a stratagem and estimate waste quantization, rather than others. Especially, we can recognized the amount variation of waste to the residence people compare to the sightseer number, and the good example a specific waste duty. Thus this paper have developed the IoT device for interconnecting the existed CCTV camera, and use the AI algorithm to analysis the waste image. By using these decision of image analysis, we can inform their deal commend and a decided information to the map of the waste cars. In order to evaluate the performance of IoT, we have experimented the electromagnetic compatibility under a national official authorization KN-32, KN61000-4-2~6, and obtained the stable experimental results. In the further experimental results, we can applicable for an data structure for precise definition command by using the simulated several waste image with artificial intelligence algorithm.

Communication Structure for Smart Railway Network (스마트 철도 네트워크를 위한 통신 구조)

  • Kim, Young-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.197-199
    • /
    • 2021
  • High speed railway system is progressed to SRN(Smart Railway Network) having entirely automation function beyond each componet automations. It is necessity to use mobile communication technology of LTE-R(Long Term Evolution - Railway) and 5G-R(5th Generation - Railway) and information technology of convergence based on AI, Big Data, Deep Learning to construct this smart railway networks. In this paper, a communication structure is suggested for SRN. This suggested communication structure for SRN is composed to include safety operation of high speed train, railway system management and customer services, and also have complexing function of these each functions. Results of this study can be used for SRN construction and opeation, and development of railway communication standards.

  • PDF

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).

A study on the development on project scope management module using rule and case-based reasoning (규칙과 사례기반추론 기법을 이용한 프로젝트 범위관리 모듈 개발에 관한 연구)

  • Shin, Ho-Kun;Jeon, Sung-Ho;Kim, Chang-Ho
    • The Journal of Information Technology
    • /
    • v.7 no.3
    • /
    • pp.127-137
    • /
    • 2004
  • A Project planning is one of the most important processes that determines success and failure of a project. Scope management for a project planning is also essential job in system integration project. However project planning is very difficult because lots of factors and their relationships should be considered. Therefore project planning of system integration project has been done by project manager's own knowledge and experience. It is necessary to develop an algorithm of WBS(Work Breakdown Structure) identification & document selection along to project's specificity in project management system using AI technique. This study presents a methodology to cope with the limitations of the existing studies that have uniformly been customizing the methodology by only project complexity. We propose PPSM(Project planning support module) based on determination rules regarding route maps and document levels, and CBR(Case-Based Reasoning) for WBS identification.

  • PDF

A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique (정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구)

  • Kim, Su-jeong;Ha, Ji-hee;Oh, Soo-hyun;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2019
  • Malware infringement attacks are continuously increasing in various environments such as mobile, IOT, windows and mac due to the emergence of new and variant malware, and signature-based countermeasures have limitations in detection of malware. In addition, analytical performance is deteriorating due to obfuscation, packing, and anti-VM technique. In this paper, we propose a system that can detect malware based on machine learning by using similarity hashing-based pattern detection technique and static analysis after file classification according to packing. This enables more efficient detection because it utilizes both pattern-based detection, which is well-known malware detection, and machine learning-based detection technology, which is advantageous for detecting new and variant malware. The results of this study were obtained by detecting accuracy of 95.79% or more for benign sample files and malware sample files provided by the AI-based malware detection track of the Information Security R&D Data Challenge 2018 competition. In the future, it is expected that it will be possible to build a system that improves detection performance by applying a feature vector and a detection method to the characteristics of a packed file.

Anomaly Detection via Pattern Dictionary Method and Atypicality in Application (패턴사전과 비정형성을 통한 이상치 탐지방법 적용)

  • Sehong Oh;Jongsung Park;Youngsam Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.481-486
    • /
    • 2023
  • Anomaly detection holds paramount significance across diverse fields, encompassing fraud detection, risk mitigation, and sensor evaluation tests. Its pertinence extends notably to the military, particularly within the Warrior Platform, a comprehensive combat equipment system with wearable sensors. Hence, we propose a data-compression-based anomaly detection approach tailored to unlabeled time series and sequence data. This method entailed the construction of two distinctive features, typicality and atypicality, to discern anomalies effectively. The typicality of a test sequence was determined by evaluating the compression efficacy achieved through the pattern dictionary. This dictionary was established based on the frequency of all patterns identified in a training sequence generated for each sensor within Warrior Platform. The resulting typicality served as an anomaly score, facilitating the identification of anomalous data using a predetermined threshold. To improve the performance of the pattern dictionary method, we leveraged atypicality to discern sequences that could undergo compression independently without relying on the pattern dictionary. Consequently, our refined approach integrated both typicality and atypicality, augmenting the effectiveness of the pattern dictionary method. Our proposed method exhibited heightened capability in detecting a spectrum of unpredictable anomalies, fortifying the stability of wearable sensors prevalent in military equipment, including the Army TIGER 4.0 system.

A Study on the Role of Local Governments in the Era of Generative Artificial Intelligence: Based on Case Studies in Gyeonggi-do Province, Seoul City, and New York City (생성형 인공지능 시대 지방정부의 역할에 대한 연구: 경기도, 서울시, 뉴욕시 사례연구를 바탕으로)

  • S. J. Lee;J. B. Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.809-818
    • /
    • 2024
  • This paper proposes an action plan for local governments to safely utilize artificial intelligence technology in various local government policies. The proposed method analyzes cases of application of artificial intelligence-related laws and policies in Gyeonggi Province, Seoul City, and New York City, and then presents matters that local governments should consider when utilizing AI technology in their policies. This paper applies the AILocalism-Korea analysis methodology, which is a modified version of the AILocalsm analysis methodology[1] presented by TheGovLab at New York University. AILocalism-Korea is an analysis methodology created to analyze the current activities of each local government in the fields of legal system, public procurement, mutual cooperation, and citizen participation, and to suggest practical alternatives in each area. In this paper, we use this analysis methodology to present 9 action plans that local governments should take based on safe and reliable use of artificial intelligence. By utilizing various AI technologies through the proposed plan in local government policies, it will be possible to realize reliable public services.