• Title/Summary/Keyword: AI-based System and Technology

Search Result 467, Processing Time 0.027 seconds

Knowledge Based Recommender System for Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks

  • Navin K.;Mukesh Krishnan M. B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.284-310
    • /
    • 2024
  • Identifying clinical pathways for disease diagnosis and treatment process recommendations are seriously decision-intensive tasks for health care practitioners. It requires them to rely on their expertise and experience to analyze various categories of health parameters from a health record to arrive at a decision in order to provide an accurate diagnosis and treatment recommendations to the end user (patient). Technological adaptation in the area of medical diagnosis using AI is dispensable; using expert systems to assist health care practitioners in decision-making is becoming increasingly popular. Our work architects a novel knowledge-based recommender system model, an expert system that can bring adaptability and transparency in usage, provide in-depth analysis of a patient's medical record, and prescribe diagnostic results and treatment process recommendations to them. The proposed system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them providing recommended sub-outcomes of discrete medical conditions. A novel knowledge-based combiner unit extracts significant relationships between the sub-outcomes of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for clinical decision support. The work establishes a model to address disease diagnosis and treatment recommendations for primary lung disease issues. In this paper, we provide some samples to demonstrate the usage of the system, and the results from the system show excellent correlation with expert assessments.

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재불량 화물차 탐지 시스템 개발)

  • Jung, Woojin;Park, Yongju;Park, Jinuk;Kim, Chang-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.562-565
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. However, this irregular weight distribution is not possible to be recognized with the current weight measurement system for vehicles on roads. To address this limitation, we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles from the CCTV, black box, and hand-held camera point of view. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. From the result, we believe that public big data can be utilized more efficiently and applied to the development of an object detection-based overloaded vehicle detection model.

  • PDF

A Study on Multiplexer Assignment Problem for Efficient Dronebot Network (효율적인 드론봇 네트워크 구성을 위한 Multiplexer 할당모형에 관한 연구)

  • Seungwon Baik
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2023
  • In the midst of the development of science and technology based on the 4th industrial revolution, the ROK Army is moving forward with the ARMY TIGER 4.0 system, a ground combat system that combines future advanced science and technology. The system is developing around an AI-based hyper-connected ground combat system, and has mobility, intelligence, and networking as core concepts. Especially, the dronebot combat system is used as a compound word that refers to unmanned combat systems including drones and ground unmanned systems. In future battlefields, it is expected that the use of unmanned and artificial intelligence-based weapon systems will increase. During the transition to a complete unmanned system, it is a very important issue to ensure connectivity individual unmanned systems themselves or between manned and unmanned systems on the battlefield. This paper introduces the Multiplexer Allocation Problem (MAP) for effective command control and communication of UAV/UGV, and proposes a heuristic algorithm. In addition, the performance of the proposed algorithm is analyzed by comparing the solutions and computing time. Also, we discuss future research area for the MAP.

  • PDF

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

A Study on Establishing Scientific Guard Systems based on TVWS (TVWS 기반 과학화경계시스템 구축방안 연구)

  • Kyuyong Shin;Yuseok Kim;Seungwon Baik
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.81-92
    • /
    • 2023
  • In recent years, the ROK military is promoting Defense Innovation 4.0 with the goal of fostering strong military based on science and technology equipped with artificial intelligence(AI) to prepare for the upcoming population cliff. In particular, at the present time of increased threats of North Korea, the South Korean military is seeking to deal with a decrease in military service resources through the introduction of a Scientific Guard System using advanced technology. TICN which is a core basic communication system to ensure the integrated combat capability of the ROK military is, however, limited to use as a based network for the emerging Scientific Guard System due to the narrow transmission bandwidth with widely spread poor reception area. To deal with this problem, this paper proposes TVWS-based Scientific Guard Systems with TVWS-based wireless network construction technology that has been available for free in Korea since 2017. The TVWS-based Scientific Guard System proposed in this paper, when compared to the existing wired network-based Scientific Guard Systems, has various advantages in terms of minimizing operational gaps, reducing construction costs, and flexibility in installation and operation.

A Study on AI Business Ecosystem (인공지능 비즈니스 생태계 연구)

  • Yoo, Soonduck
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.21-27
    • /
    • 2020
  • The purpose of this study is to investigate the ecosystem structure underlying the development of artificial intelligence technology and related industries. In addition, the research on the AI business ecosystem based on AI technology and the ways to activate them was discussed. Ecosystems play a role in organically connecting producers, consumers, and decomposers. In the AI ecosystem, we classified the AI service producers, producers of AI services using the produced services, and data and related infrastructure services that are the basis of AI services. Stakeholders in the AI business ecosystem are the government and various private organizations that have a direct or indirect influence on AI service production, consumption, and operation. In Korea, in particular, the government plays a role as the most influential stakeholders. For example, the company contributes to the increase of producers, which are related to human resource development, and plays a catalyst role in the increase of services produced by R & D funding. In this study, the policy for revitalizing the AI business ecosystem includes (1) securing the environment for increasing producers, (2) spreading AI awareness among consumers, (3) securing data exchange and supply infrastructure, and (4) supporting services and related laws. Secure the system. This study is meaningful in that it contributes to and contributes to the construction of domestic AI-based environment and related research.

A Methodology for Using ChatGPT to Improve BIM-based Design Data Evaluation System (BIM기반 설계데이터 평가 시스템 개선을 위한 ChatGPT활용 방법론)

  • Yu, Eun-Sang;Kim, Gu-Taek;Ahn, Yong-Han;Choi, Jung-Sik
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.25-34
    • /
    • 2024
  • This study proposes a new methodology to increase the flexibility and efficiency of the design data evaluation system by combining Building Information Modeling (BIM) technology in the architectural industry, OpenAI's interactive artificial intelligence, and ChatGPT. BIM technology plays an important role in digitally modeling and managing architectural information. Since architectural information is included, research and development are underway to review and evaluate BIM data according to conditions through program development. However, in the process of reviewing BIM design data, if the review criteria or evaluation criteria according to design change occur frequently, it is necessary to update the program anew. In order for designers or reviewers to apply the changed criteria, requesting a program developer will delay time. This problem was studied by using ChatGPT to modify and update the design data evaluation program code in real time. In this study, it is aimed to improve the changing standards and accuracy by enabling programming non-professionals to change the design regulations and calculation standards of the BIM evaluation program system using ChatGPT. In this study, in the BIM-based design certification automation evaluation program, a program in which the automation evaluation method is being studied based on the design certification evaluation manual was first used. In the design certification automation evaluation program, the programming non-majors checked the automation evaluation code by linking ChatGPT, and the changed calculation criteria were created and modified interactively. As a result of the evaluation, the change in the calculation standard was explained to ChatGPT and the applied result was confirmed.

A Predictive System for Equipment Fault Diagnosis based on Machine Learning in Smart Factory (스마트 팩토리에서 머신 러닝 기반 설비 장애진단 예측 시스템)

  • Chow, Jaehyung;Lee, Jaeoh
    • KNOM Review
    • /
    • v.24 no.1
    • /
    • pp.13-19
    • /
    • 2021
  • In recent, there is research to maximize production by preventing failures/accidents in advance through fault diagnosis/prediction and factory automation in the industrial field. Cloud technology for accumulating a large amount of data, big data technology for data processing, and Artificial Intelligence(AI) technology for easy data analysis are promising candidate technologies for accomplishing this. Also, recently, due to the development of fault diagnosis/prediction, the equipment maintenance method is also developing from Time Based Maintenance(TBM), being a method of regularly maintaining equipment, to the TBM of combining Condition Based Maintenance(CBM), being a method of maintenance according to the condition of the equipment. For CBM-based maintenance, it is necessary to define and analyze the condition of the facility. Therefore, we propose a machine learning-based system and data model for diagnosing the fault in this paper. And based on this, we will present a case of predicting the fault occurrence in advance.

Generative AI service implementation using LLM application architecture: based on RAG model and LangChain framework (LLM 애플리케이션 아키텍처를 활용한 생성형 AI 서비스 구현: RAG모델과 LangChain 프레임워크 기반)

  • Cheonsu Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.129-164
    • /
    • 2023
  • In a situation where the use and introduction of Large Language Models (LLMs) is expanding due to recent developments in generative AI technology, it is difficult to find actual application cases or implementation methods for the use of internal company data in existing studies. Accordingly, this study presents a method of implementing generative AI services using the LLM application architecture using the most widely used LangChain framework. To this end, we reviewed various ways to overcome the problem of lack of information, focusing on the use of LLM, and presented specific solutions. To this end, we analyze methods of fine-tuning or direct use of document information and look in detail at the main steps of information storage and retrieval methods using the retrieval augmented generation (RAG) model to solve these problems. In particular, similar context recommendation and Question-Answering (QA) systems were utilized as a method to store and search information in a vector store using the RAG model. In addition, the specific operation method, major implementation steps and cases, including implementation source and user interface were presented to enhance understanding of generative AI technology. This has meaning and value in enabling LLM to be actively utilized in implementing services within companies.

Physical-Layer Technology Trend and Prospect for AI-based Mobile Communication (AI 기반 이동통신 물리계층 기술 동향과 전망)

  • Chang, K.;Ko, Y.J.;Kim, I.G.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.14-29
    • /
    • 2020
  • The 6G mobile communication system will become a backbone infrastructure around 2030 for the future digital world by providing distinctive services such as five-sense holograms, ultra-high reliability/low-latency, ultra-high-precision positioning, ultra-massive connectivity, and gigabit-per-second data rate for aerial and maritime terminals. The recent remarkable advances in machine learning (ML) technology have recognized its efficiency in wireless networking fields such as resource management and cell-configuration optimization. Further innovation in ML is expected to play an important role in solving new problems arising from 6G network management and service delivery. In contrast, an approach to apply ML to a physical-layer (PHY) target tackles the basic problems in radio links, such as overcoming signal distortion and interference. This paper reviews the methodologies of ML-based PHY, relevant industrial trends, and candiate technologies, including future research directions and standardization impacts.