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Abstract 

 
Identifying clinical pathways for disease diagnosis and treatment process recommendations 
are seriously decision-intensive tasks for health care practitioners. It requires them to rely on 
their expertise and experience to analyze various categories of health parameters from a health 
record to arrive at a decision in order to provide an accurate diagnosis and treatment 
recommendations to the end user (patient). Technological adaptation in the area of medical 
diagnosis using AI is dispensable; using expert systems to assist health care practitioners in 
decision-making is becoming increasingly popular. Our work architects a novel 
knowledge-based recommender system model, an expert system that can bring adaptability 
and transparency in usage, provide in-depth analysis of a patient's medical record, and 
prescribe diagnostic results and treatment process recommendations to them. The proposed 
system uses a set of parallel discrete fuzzy rule-based classifier systems, with each of them 
providing recommended sub-outcomes of discrete medical conditions. A novel 
knowledge-based combiner unit extracts significant relationships between the sub-outcomes 
of discrete fuzzy rule-based classifier systems to provide holistic outcomes and solutions for 
clinical decision support. The work establishes a model to address disease diagnosis and 
treatment recommendations for primary lung disease issues. In this paper, we provide some 
samples to demonstrate the usage of the system, and the results from the system show 
excellent correlation with expert assessments. 
 
 
Keywords: Knowledge-based decision support system, Fuzzy rule-based classification, 
Parallel fuzzy systems architecture, Health care recommendation system, Disease diagnosis 
and treatment. 
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1. Introduction 

Recommendation systems are an inevitable tool for information filtering and knowledge 
extraction [1]. They are modeled to serve applications in diverse domains, including 
e-commerce, entertainment, social media, news, and more [2]. The impact of adhering to 
recommendations for decision support may have low-risk to high-risk effects on an 
application domain [3]. Healthcare recommender systems (HRS) are one such domain that 
needs to be modeled and designed to deliver minimal or zero error-tolerant recommendation 
information that is trustworthy, transparent, and reliable [4]. The recommendable item of 
interest in HRS happens to be medical information, which needs to be arrived at through a 
methodology that is scientifically proven or at least generally accepted [5]. There are many 
sub-domain classifications in the health care recommender domain. The wellness domain, 
health care services, food and nutrition information, physical exercise and sports, diagnosis, 
and treatment/medication are some sub-domains that are worth mentioning [6]. 

The recommender system elements, users, items, and context of recommendation system 
usage can vary for each sub-domain of the health care recommender system. In the case of 
food recommender systems, a sub domain of health recommender systems, end-users can be 
healthy people. Items can be referred to here as healthy food choices, and in the context of 
recommender system usage, it can prescribe appropriate nutrition intake to prevent diseases 
and promote healthy living [7]. Depending on the requirements of the application, several 
studies on health care recommender systems offer various strategies. Prominently suggested 
strategies are collaborative filtering, content-based, knowledge-based, and hybrid techniques, 
which are combinations of the aforementioned methods [8]. 

In the health condition diagnostics and treatment process health care recommender domain, 
the recommender element 'user' refers to a patient or healthy person, the recommender element 
'item' refers to prescribed content for various diagnosed medical conditions or prescribed 
content of treatment processes is referred to features of the items [5]. 
     Knowledge-based recommender systems are an ideal technique for developing medical 
diagnosis and treatment process recommendation systems [8],[9]. These systems gather and 
construct a knowledge base using information about items, including descriptions and 
attributes, leveraging the domain knowledge of experts. They explicitly capture user 
preferences and create user profiles tailored for the recommendation process. Based on item 
knowledge, the system generates recommendations by matching the user's profile with item 
attributes and characteristics gathered in the knowledge base. It applies filtering and ranking 
techniques based on the relevancy of mapping in the knowledge base. In this context, the 
patient's health record can be seen as explicit user input, which should be transformed into a 
patient profile to facilitate the mapping with the knowledge base, representing various 
diagnosis conditions (items) [10]. Rule-based systems are well-suited for representing the 
knowledge base due to their capacity to offer transparency in design [11]. 

Healthcare experts use their past experiences to recommend high-quality medical treatment 
to their patients. They need to analyze patient health information consisting of diagnostic data, 
their personal health data and other supporting information relating to health for 
decision-making [12],[13]. Because doctors are humans, missing criteria during the analysis 
of medical reports can result in an error of judgment in decision-making [14]. The need for 
decision-support systems is crucial for healthcare experts in helping them in accurately assess 
a patient's condition and provide precise treatment recommendations. They also help 
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healthcare professionals follow established clinical guidelines and send alerts to prevent 
deviations from standard procedures [15],[16].  

Although knowledge-based decision support systems offer numerous benefits, their 
integration into clinical settings is not without hurdles. It necessitates a close collaboration 
between healthcare professionals and system engineers to configure the system for practical 
clinical use. One of the most prevalent challenges lies in designing the system to seamlessly 
accommodate routine care, enabling the system to update settings in accordance with the latest 
evidence and guidelines [17],[18]. To overcome these barriers, it is crucial that the 
configuration of rules in knowledge-based systems be transparent, facilitating the 
identification of deviations and offering ease of reconfiguration [19]. Another pivotal design 
consideration is adaptability, where the system model must be sufficiently flexible to 
incorporate new criteria in a clinical setting with minimal or no intervention required from 
system engineers [20]. 

Our proposed work can be modeled as an expert guiding tool for the clinical treatment 
pathway adhering to proper guidelines and expert knowledge for the specific disease or 
medical condition under consideration. The proposed model addresses an individual's health 
condition, particularly when they are under specific medical observation. This innovative 
system, adopting the recommendation system model as an expert system aims to assist 
healthcare practitioners in comprehending the patient's personal health record, effectively 
representing their health status, and facilitating the proficient presentation of pertinent 
information. The information is presented in relation to the current health condition, along 
with associated score values and potential subsequent conditions, providing a more 
comprehensive analysis for decision support. 
The proposed model uses discrete parallel fuzzy systems [21], referred to as "fuzzy blocks" 
which serve as fuzzy rule-based classifiers. These 'fuzzy blocks' possess the capacity to deliver 
diagnosis outcomes for sub-medical conditions. A novel rule-based combiner component 
combines the outputs of these discrete fuzzy systems, utilizing a knowledge base, thereby 
yielding holistic diagnosis for medical conditions and furnishing pertinent treatment 
recommendations. The model supports sequential decision processing with state maintenance 
capability, which is an ideal foil for directing the clinical pathway for diagnostic and treatment 
process recommendations. To facilitate these functions, a dedicated configuring unit, known 
as the 'fuzzy composer,' is employed. This component takes on a crucial role not only in 
configuring individual discrete fuzzy rule-based classifier systems but also in organizing them 
for the sequential process to comply with specific domain requirements within the realm of 
healthcare. 

2. Background 
Fuzzy logic systems work well for such decision-intensive tasks since they imitate the way 

of decision-making of expert humans [22]. Fuzzy rule-based systems can be designed for 
representing expert knowledge related to the application under purview. Here, the 
knowledge-based fuzzy sets, combined with fuzzy logic rules, are used to represent the 
relationship between input and output. This can closely resemble a trained human by 
mimicking the way of approach, perception, and cognition in decision-making for a given 
application domain [23]. Further fuzzy-based systems are effective in resolving conflicts of 
multiple criteria and provide better logical assessment of options as well as modeling the 
interactions and relationships existing between its variables [24],[25]. 
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2.1 Fuzzy Based Systems in Medical Diagnostics 
Works based fuzzy rule-based systems in the area of medical diagnostics have been available 
since 1986, and since then substantial papers have been published to date. Rustempasic and 
Can (2013) [26] proposed fuzzy C-mean clustering-based pattern recognition in order to 
identify Parkinson's illness. They analyzed the ambiguity of the problem and adopted fuzzy 
logic to address it. Hasan et al.'s (2010) [27] introduced a fuzzy-based expert system, an online 
diagnosis tool. Users in their system have the option of selecting between illnesses and 
symptoms. The technology might offer a pertinent likelihood of sickness by asking them 
questions about their symptoms. Later, a web-based application diagnostic system was 
presented by Samuel et al. (2013) [28], adopting fuzzy logic for diagnosing typhoid fever. 
Biyouki et al.'s (2015) [29] applied a fuzzy rule-based expert system in order to detect thyroid 
illness. They used a mamdani-based inference engine and a centroid approach-based 
defuzzification. Saikia and Dutta (2016) [30] applied fuzzy inference systems to predict 
dengue disease status. Behnam Malmir et al.'s (2017) [31], developed a medical decision 
support system based on a fuzzy rule-based inference system and used the Mamdani 
defuzzification process to diagnose risk level of kidney stones and kidney infections based on 
input symptoms. Singla, Jimmy, et al.'s (2020) [32] work addressed kidney disease and 
incorporated a scoring system for expressing the severity of symptoms to serve the 
fuzzification process retrieved from questioning the patients. Improta, Giovanni, et al.'s (2020) 
[33] presented a fuzzy inference system for decision support in monitoring renal function. The 
model uses the Mamdani-type FIS right from the analysis of the data and uses previous clinic 
knowledge of the subject.   

Fuzzy rule-based classifiers (FRBCs), a component of fuzzy logic-based decision support 
systems (DSS), solve classification problems in a wide range of application fields, particularly 
in the areas of risk assessment, pattern recognition, and medical diagnostics recommendations 
[34],[35]. The ability to represent classification results along with a clear explanation and 
measure of the associated uncertainty is highly appealing and is attracting a great deal of 
research interest [36]. 

Substantial work in the area of fuzzy rule based classifiers (FRBCs) has been proposed, 
with different types of classifier systems being proposed based on the domain under 
consideration [37]. Many related works based on fuzzy-based classifier systems have been 
developed for specific applications [38]. Building a fuzzy rule based classifiers requires 
developing a knowledge base consisting of rules and databases, and designing a mechanism to 
classify input data based on the knowledge base. Fuzzy classifiers have to be modeled based 
on consideration of the following parameters: number of variables; number of fuzzy sets; 
selection of fuzzy membership function; completeness of rules; inference engine type; 
defuzzification type [37]. Different algorithms are proposed for generating the best rules used 
to classify example data set effectively. Decomposition strategies address the classification 
problem, each strategy adopts a scoring technique called rule weight for computing the 
confidence level of classes, which is interpreted as discrimination and selection of a class 
[39],[40]. As an assessment criteria for any proposed classifier system, performance, 
interpretability, and differentiability would largely determine the evaluation of any proposed 
fuzzy classifier model [41]. 
Fuzzy logic systems for decision support might follow different architecture styles, such as a 
parallel architecture design style or a hierarchical approach consisting of combination of 
multiple fuzzy logic system modules. The hierarchical architecture has each fuzzy sub-module 
connected in cascaded mode, with the consequent part of one fuzzy sub-system becoming one 
of the inputs to the next system. The parallel architecture has each module parallel-fed with 
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different antecedent parts. The output of each module is fed to a combiner unit, which would 
adopt a strategy to arrive at a holistic decision support outcome [36]. 

3. Proposed Work 
Most of the previous works addressed diagnosing single diseases and used a single fuzzy 
rule-based system to adopt expert knowledge and recommend diagnostic outcomes for given 
input. The work adopting fuzzy models takes input medical diagnostic parameters as a whole 
and gets processed by a fuzzy inference unit. The output observed through defuzzification is 
the diagnostic result for the specific disease under consideration. Our proposed work 
subdivides the input into sub-medical conditions; hence, the need for complex single fuzzy 
unit modeling is avoided. Multiple fuzzy units addressing sub-medical conditions separately 
bring clarity and depth to the diagnosis. This section addresses the design and modeling of the 
proposed system, which is employed for lung function diagnosis and treatment 
recommendations.  

3.1 Architecture 
Fig. 1 represents the proposed architecture of the expert system to address health care 
recommendations for diagnostic and treatment processes. The proposed fuzzy logic inference 
system adopts a multi-stage processing model and incorporates a novel fuzzy composer 
segment, a configuration and data organizing segment, to configure parallel discrete fuzzy 
logic systems referred to as "fuzzy blocks". Each fuzzy block is a Fuzzy Rule Based Classifier 
System (FRBCS), a subsystem representing a discrete sub-medical condition. This parallel 
architecture strategy consisting of discrete fuzzy blocks provides discrete diagnostic solutions, 
which are combined in the "knowledge-based combiner segment" to provide holistic solutions 
for the given medical data prescribed for the medical test under consideration. 

3.2 Modeling Adaptive Fuzzy Blocks 
Each stage in the process utilizes expert knowledge to establish different segments of the 
proposed architecture, with each of these segments constituting essential elements of the fuzzy 
logic system. The system's output is a diagnosed medical condition and treatment process 
recommendations, along with an explanation and a measure of how certain the 
recommendations are. The proposed model operates in two distinct modes: 1. Configuration 
mode. 2. Execution mode. 
In configuration mode, the fuzzy composer segment instantiates fuzzy blocks, which would 
address all potential criteria of the specific medical conditions under consideration associated 
with medical diagnostic and treatment procedures. The essential steps involve identifying and 
categorizing potential fuzzy blocks into three distinct types: primary blocks, support blocks, 
and auxiliary blocks, all pertinent to the targeted disease diagnostic procedure under 
consideration. Primary blocks constitute the fundamental part of initiating the process, which 
is indispensable for the complete diagnosis process. Support blocks, which come into play 
after the mandatory primary blocks or other support blocks, are recommended for subsequent 
diagnostic stages. Auxiliary blocks serve as supplementary elements, contributing additional 
information for the purposes of diagnosis and treatment. Configure the properties (diagnostic 
parameters) as per the guidelines and standards for each block. This process involves 
categorizing fuzzy sets, allotting linguistic labels, establishing ranges for each property, and 
assigning appropriate fuzzy membership functions to align with the nature of the data and the 
problem domain in hand. The rule base for each fuzzy block is set based on the training set and 
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expert domain knowledge. There is a large possibility of rules that can be set theoretically, but 
only rules that make practical sense are used. Here, the consequent part for each rule is 
associated with a class label, which is defined in accordance with the intrinsic attributes of the 
problem domain and the underlying data distribution. The novel rule-based combiner segment 
is configured with intra-block relationship rules derived through the rule base based on 
experts' knowledge to propose holistic diagnosis and recommendations for treatment. The 
combiner segment consists of possible sets of rules that map various combinations of discrete 
fuzzy block outcomes. 

In the execution mode, the fuzzy composer undertakes the task of not only validating 
incoming parameters but also allocating them to suitably configured fuzzy blocks. This 
involves the establishment of primary blocks and support blocks, which could potentially be 
necessary for the ensuing subsequent diagnostic processes. Every unit of the fuzzy block 
rule-based classifier operates on its respective input medical data during the diagnostic process. 
The activated rules within each fuzzy block, with their respective class labels and yielding 
activation scores as a consequent part are observed. Each fuzzy block's consequent part 
provides specific medical insights for each sub-medical condition. The novel rule-based 
combiner unit consolidates the decision outcomes of discrete fuzzy blocks and provides 
comprehensive decision outputs. The firing rules of the combiner segment represent the 
holistic recommendations. 
The following segment of the section elaborates on the proposed model. 
1. Tabulate all conceivable medical parameters essential for diagnosis and identify the fuzzy 
parameters for the disease under consideration. Let 'n' denote the overall count of parameters 
under consideration. 
                                                       X  = { }1 2 , , ... nx x x                                                            (1)                           

2. Configure all pertinent fuzzy blocks for the disease under consideration for the diagnostic 
process. Each individual fuzzy block functions as a Fuzzy Rule Based Classifier System 
(FRBCS), constituting a subsystem responsible for representing discrete sub-medical 
conditions. A mapping function Compf(X) is utilized to configure fuzzy blocks based on the 
input X used for a particular diagnostic system. 

1,2...
V = Comp (X)

config m
f

=
 

{ } { } { } { }{ }1 2

11 12 1p 21 22 2q d1 d2 dr 1 2 msV   ,  ...  ...  X., ... , ... , ... , ...d m
m mx x x x x x x x x x x x= ⊆  

Let  d d1 d2 drv {x ,x ,...x }=  

                                                      1 2 d mV={v v }, ,...v ,...v                                                         (2) 
 Let V denote the ensemble of 'm' fuzzy inference systems, with Vd representing the dth fuzzy 
block. In this context, each individual fuzzy inference system is denoted as a 'fuzzy block,' 
strategically employed for diagnosing specific medical conditions. Collectively, these distinct 
fuzzy blocks collaborate to deliver a holistic medical diagnosis along with corresponding 
treatment recommendations. Through expert intervention, a configuration table is employed to 
establish the grouping of all conceivable input parameters for the establishment of fuzzy 
blocks, guided by diagnostic criteria. For each pertinent input parameter, the associated fuzzy 
linguistic variables, the corresponding range of values, an appropriate membership function, 
and the required accuracy for intervention are meticulously defined.  
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Fig. 1. Shows the architecture of adaptive fuzzy blocks based  health care recommender system. 

(Source : The authors) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024             291 

The configuration table also encompasses the specifications concerning the designation of 
fuzzy blocks as either primary, support, or auxiliary within the framework for establishing a 
sequential process for diagnosis and treatment computation. 
3. Every fuzzy block encompasses a set of medical parameters that are relevant to its operation. 
These input parameters undergo preprocessing and are subsequently fed into the fuzzier input 
segment of the system as crisp values. Let ud represent the fuzzified values of the input 
parameters of the dth fuzzy block under consideration after the fuzzification process. 

d i i
1,2...

i x ) | x rμĀ X for all i=1,...u (
i r

=
=

∈  

The notation μA(xi) embodies the fuzzification process, establishing the connection between 
the crisp input value xi and the fuzzy set A. The symbol μ stands for the membership function, 
capable of adopting either trapezoidal or triangular configurations. This function generates a 
fuzzified value that quantifies the degree of belongingness to the set. Conversely, Ā 
encompasses a collection of fuzzy sets, encompassing a range of fuzzy values associated with 
a particular crisp input value. Step functions are used for boolean set representations. 
Let the fuzzification operation on a fuzzy block be Fuzzf(u) then 

 
i i

1,2...
U m U fFuzz  (u a) | or ll i=1,...u

i m
f

=
∈=  

                                             1 2 d m d UU ={u u u u }| u, ,... ,... ∈                                                  (3) 
 U is the collection of fuzzy block parameters after fuzzification operation performed on 'm' 
fuzzy blocks. 

d 1 2 q nW  ={ }ω ω ω ω, ,... ,...  

This expression represents a collection (Wd) of activation strengths (ω) computed for each 
rule within the dth fuzzy block. ωq corresponds to the activation strength of a specific rule q 
within the block. The computed rule activation strength ωq is associated with a class label Cj 
classified from a set of k classes. For a sample input xe, the class strength for each of the 
provided classes is computed for all the rules within the fuzzy block ud. 

Computing activation strength for 
;

ωj j
R RB C Cq j

C
∈ =

= ∑ | C=1,2....,k 

Classification for the fuzzy block ud is carried out using the majority voting method. This 
means that the classes with the highest activation strengths are ordered and recommended as 
the final classification. The result is represented as Csel

d, which signifies the selected classes for 
the dth fuzzy block based on their activation strengths. Classes with an activation strength of 
zero are excluded from this selection.  

d

selC  = arg 
1,2...

sort
i k=

class_strengthf(Ci) 

For each of the fuzzy blocks, the classes of respective fuzzy blocks with higher scores are 
arranged or ordered. Typically, the one with the highest score is selected to address discrete 
medical conditions of that block.  

                       H = 
1,2...

_
i m

fuzzy classifier
=

(ui) | ui ∈ U for all i=1,... m 

The resulting collection of selected classes (Csel) from each block becomes the consequent part 
of those respective blocks. These selected classes serve as a mapping to the respective 
diagnostic condition in the context of each block. 
                                                    { }1 2H  ,  ,... ... d m

sel sel sel selC C C C=                                                (4) 
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  5. The outcomes of the consequent parts of all parallel discrete fuzzy blocks, each 
characterizing discrete medical conditions, are collectively cascaded to a novel combiner 
segment referred to as the knowledge-based recommender segment. This segment 
encompasses a set of rules that are formulated through the combination of class labels that 
result from diverse parallel discrete fuzzy blocks that have been configured. These rules 
express insights into the cumulative influence of various discrete medical conditions, resulting 
in the presentation of a comprehensive diagnostic and treatment recommendation outcome 
from a holistic standpoint.  
      Let K be the set of rules representing the knowledge-based recommender segment, which 
can be denoted as: 

                                                            1 2 i mK={k },k ,...k ,...k  
      For example, let's consider a specific rule ki within this knowledge rule set. This rule can 
be represented as: 
                                                       ik   d f h

k l mC C C= ∧ ∧  
Here, Ck

d ,Cl
f, and Cm

h are labeled classes from the pool of the respective fuzzy block's 
consequent part. For instance, Ck

d represents the kth class label from fuzzy block d, Cl
f 

represents the lth class label from fuzzy block f, and Cm
h represents the mth class from fuzzy 

block h. These rules are created through the combination of class labels from different blocks 
along with the range of activation scores. 

  W= Rule_Selectionf(H,K) 

                                                      { }1 2

,
KW k k k, ,... n

sel sel sel= ⊆                                               (5) 

The rule selection function within the knowledge-based combiner segment determines a set of 
activated rules (W) based on the input obtained from the previous stage. The algorithm for rule 
selection is provided above. Given the input health record parameters to the system, as 
referenced in Equation 1, the mapping of the recommended output W comprises the set of 
activated rules retrieved from the knowledge-based decision support system described in 
Equation 5. The inference drawn from these activated rules from this segment, along with the 
consequent parts from each discrete fuzzy blocks from the previous stage, whether considered 
individually or in combination, provides holistic diagnostic information. This information aids 
in understanding the precise health issue and subsequently recommending a suitable treatment 
process. 
6. The recommender explanation segment serves as the final stage of the proposed expert 
system, responsible for interpreting the activated rules generated by the combiner segment. Its 
objective is to deliver a comprehensive diagnostic report and treatment process 
recommendations through a clear and informative explanation. An effective recommender 
system explanation should possess qualities such as transparency, scrutability, trustworthiness, 
effectiveness, and persuasiveness. By embodying these qualities, it enhances the efficiency 
and user satisfaction of the system [36]. In the context of iterative diagnosis, when primary 
blocks are linked with support blocks, the recommender explanation becomes more 
consolidated and informative. Additionally, auxiliary blocks contribute supplementary 
information to the main blocks. The recommendation explanation aims to present decision 
support stemming from both the main block and the auxiliary block. This segment ensures that 
the clinical decision support is not only relevant but also aligned with the user's needs. 
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Algorithm :      Rule Based Knowledge Retrieval Algorithm 

Input : 
1 2 i mK={k },k ,...k ,...k ;          K is an array of combiner rules, ’n’ refers to  total 

set of rules representing knowledge based recommender segment .    

{ }1 2H  ,  ,... ... d m

sel sel sel selC C C C= ; H is an array ’m’ refers to  number of fuzzy 

blocks .The array composes of resultant collection of the consequent part of 
each fuzzy block would be  selected classes (Csel) from each block along with 
their activation score. 

           

 

Output : W:Collection of fired rules from the knowledge rule base  

   procedure : Rule_Selection 

initialize i←0 

for  i to length of K-1 do 

        firedrules[i] ← TRUE 

       for each rule  in K do 

          rule_arr[] ←  parse(rule) /* Parse the rule */      

          for each class_ label  in rule_arr  do 

               if class_ label ∈ H   then 

                   continue 

              else 

                  firedrules[i] ← FALSE 

                   break 

         end for 

  end for 

end for 

for each  flag  in firedrules 

    i←0 

    if flag  is TRUE then 

       append W from K [i] /*with fired rules */ 

    end if 

end for 

  end procedure 
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4. Materials and Methods 
The evaluation of the proposed fuzzy expert system, configured to address basic lung disease 
diagnosis and treatment processes was carried out using a hospital database containing 
thoroughly examined health records by medical specialists. For the purpose of this assessment, 
a carefully chosen subset of 120 patient records has been chosen from the extensive hospital 
database originating from the Department of Pulmonology at the SRM Institute of Science and 
Technology. These patient records serve as a comprehensive and representative sample that 
will enable us to draw meaningful conclusions about the performance and applicability of our 
proposed approach. The prime focus of this evaluation lies in the meticulous examination of 
the classification efficiency of the configured fuzzy blocks. The objective is to ascertain the 
precision with which the provided health parameters are aligned with their corresponding 
classes within the fuzzy blocks. This evaluation brings insight into the proposed expert 
system's performance and its capacity to accurately associate input parameters with pertinent 
diagnostic outcomes. 

4.1 Configuring the System 
The proposed model is configured to address the basic lung function testing, diagnosis, and 
treatment processes. The model absorbs experts' knowledge at each stage to automate the 
process. The proposed model configures fuzzy blocks for the Pulmonary Function Test (PFT) , 
Breathlessness Test (BLT). Bronco Dilator Reversibility Test (BDR) to assess specific 
medical conditions to diagnose lung diseases like interstitial lung disease, chronic obstructive 
pulmonary disease (COPD), and asthma [42]. 
 

 
Fig. 2. Shows the fuzzy blocks configured for basic lung disease test process.  

(Source : Experts' guidelines) 
 
The fuzzy composer initializes the Pulmonary Function Test (PFT) and Breathlessness Test 
(BLT) as mandatory primary fuzzy blocks. Additionally, the PFT fuzzy block may 
recommend the Bronco Dilator Reversibility Test (BDR) as a support fuzzy block as a 
subsequent diagnostic step depending on the test's results. The Personal Health Data (PHD) 
constitutes an auxiliary fuzzy block, contributing supplementary information to enhance the 
predictability of diagnosis and treatment recommendations. Fig. 2 shows the employed fuzzy 
blocks within the proposed system. Conforming to the ATS/ERS and Modified Medical 
Research Council (mMRC) guidelines, the medical parameters of each diagnostic block 
determine the ranges of FEV1 and FVC in the PFT block, as well as the dyspnea scale [43]. 
  Measurable parameters are directly represented as crisp inputs, physicians  examination of 
patient symptoms can be expressed in linguistic terms and associated with a range of score 
values from zero to a maximum range value [33]. The representation of patient symptoms, 
indicated by score values, utilizes either triangular or trapezoid distributions. Fig. 3, Fig. 4, 
and Fig. 5 depict the fuzzy membership functions for the parameters of configured fuzzy 
blocks. In the appendix section, the following tables, from Table 1 to Table 9, serve as 
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illustrative examples of experimental setups, showcasing the step-by-step configuration 
process to be applied to each fuzzy block within the proposed model. 
 

 
 

Fig. 3. Shows the fuzzy membership function for parameters of PFT block.  
(Source : Experts' guidelines) 

 

 
Fig. 4. Shows the fuzzy membership function for parameters of Breathlessness Test block and BDR 

block. (Source : Experts' guidelines) 
 

 
 

Fig. 5. Shows the fuzzy membership function for parameters of PHD block.  
(Source : Experts' guidelines) 

5. Results and Discussion 
Among the comprehensive dataset of 120 records, each meticulously documented with 
diagnostic and treatment recommendations by expert medical practitioners, an initial 
execution of the system yielded a notable outcome. Specifically, 112 records were found to be 
in line with both diagnostic and treatment directives as compared to the expert-assigned 
outcomes. Eight health records diverged from the expert's opinion, with four of them deviating 
at diagnostic stage itself and further four of them at subsequent combiner stage. 45 health 
records indicative of normal lung health were accurately classified throughout the diagnostic 
and treatment phases. For the subset of health records diagnosed with Chronic Obstructive 
Pulmonary Disease (COPD), encompassing 35 cases, the system demonstrated a strong 
performance. A total of 33 cases were correctly classified, while two cases were deemed as 
Mixed disease in their classification. The system's evaluation extended to 15 cases of asthma, 
achieving accuracy in 13 instances and noting a minor variance in two cases. Additionally, the 
system effectively identified 25 records associated with restrictive lung disease. In the 
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combiner block, four records exhibited divergence, primarily attributed to the missing of 
specific criteria within the rule base. Fig. 6 illustrates a visual representation of the dataset 
distribution for the examined parameters of FEV1, FVC, and FEV1/FVC ratio derived from 
the pulmonary function test and Fig. 7 represents the numbers for the examined parameters of 
breathlessness test and bronco dilator reversibility test. This graphical depiction provides a 
distribution patterns and relationships within the dataset, aiding for analysis and 
interpretations of respective respiratory health indicators. 
 

 
Fig. 6. Presents a visual representation of the dataset distribution of the examined pulmonary function 

test.(Source : Hospital database) 
 

 
Fig. 7. Presents a visual representation of the dataset distribution of the examined Breathlessness Test 

and Bronco dilator Reversibility test. (Source : Hospital database) 
 

5.1 Evaluating the Model 
The assessment of proposed knowledge based recommender system can be observed in two 
ways [44]. 
 1. Assessing the Accuracy of the Inference Mechanism: This involves examining how 
accurately the system's inference mechanism operates. 
2. The completeness and structure of the knowledge base: This assessment focuses on the 
comprehensiveness and organization of the knowledge base. It ensures that the knowledge 
base contains all the necessary information and that the structure of this knowledge aligns with 
the requirements of the system.  
We measure the performance of the system through precision, recall, and the F1 score [45] for 
each class of each block to check the correctness of the inference mechanism and identify any 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024             297 

deviations. These metrics helps identifying specific issues, such as potential misalignment in 
defining the ranges of fuzzy sets or addressing cases where overlapping rules may be 
encountered. 
For each class of a fuzzy block and collection of data set instances predicted for the class, 
determine the following: 
True Positives (TP): The number of instances where the system identified true class and the 
expert predicted class match. 
False Positives (FP): The number of instances where the expert predicted class is positive but 
the system identified true class is negative. 
False Negatives (FN): The number of instances where the expert predicted class is negative 
but the system identified true class is positive. 
Precision : Precision is measured for each class of the fuzzy block to assess the accuracy of 
classifying instances into a specific class. It is calculated as the ratio of true positives 
(instances correctly classified as belonging to the class in question) to the total instances 
predicted as that class, which includes both true positives and false positives. 

Precision P
TP

TP+F=  

Recall : Recall is measured for each class of the fuzzy block to assess the system's ability to 
correctly classify all actual instances of a specific class. It is calculated as the ratio of true 
positives (instances correctly classified as belonging to the class) to the total instances that 
genuinely belong to that class, including true positives and false negatives 

N
TR Pecall TP+F=  

F1 score : The F1 score provides the harmonic mean of precision and recall. It combines 
precision and recall into a single metric that balances both aspects of classification 
performance. 
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We calculate macro-averaged precision, recall, and F1 score to evaluate the overall 
performance of the fuzzy block across test dataset instances. For example, to compute 
macro-averaged precision, we calculate precision values individually for each class and then 
determine the mean of these precision values. Similarly macro-averaged recall and 
macro-averaged F1 score are computed. 

1Precision Precision
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n i
= ∑

=
     ;   1Recall Recall
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n
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∑
=
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1F1Score F1Score
1
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n
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= ∑

=
'n' represents number of classes in the block. 

Average Precision is a classification metric used to gauge the model's ability to accurately rank 
the top-N classes from a set of chosen classes. In multi-class classification, it is utilized to 
assess how well a model ranks the true class within a list of possible classes for each instance. 
It plays a crucial role in calculating Top-N recommendation, a metric that quantifies the 
proportion of instances where the true classes align with the top-N recommended classes in a 
specific order. For example, if N is set to 1 (Top-1), it measures the correctness of the model's 
first choice. If N is set to 3 (Top-3), it measures the correctness of the model's top 3 choices. A 
higher Top-N accuracy indicates a better model, as it indicates the model's ability to rank the 
correct classes among the top choices in order. 
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Average Precision (AP): For each sample data instance, AP (Average Precision) is a measure 
of the quality of recommendations based on the selected classes ordered by activation strength. 
It evaluates whether relevant classes (correct recommendations) are ranked in the correct order 
within the list. 

(Pr @ * Rel( ))
0AP N

N
ecision i i

i
∑
==  

For top N selected classes based on activation strength representing recommendations of fuzzy 
block. Precision @ i is computing the precision at ith position in the ranked list is given by  
 

Number of relevent activated classes @ Top  positio@ nPrecision i i
i=  

 Rel(i) is a binary indicator function that equals 1 if the class at position "i" is relevant and 0 
otherwise. N is the total number of classes in the ground truth list. 
Mean Average Precision (MAP): It is a comprehensive metric that sheds light on the overall 
performance of a fuzzy block in terms of the relevance of its inference mechanism. It evaluates 
the correctness of the top-N recommendations across entire data set instances, providing a 
crucial assessment of the system's recommendation capability. 

1
0

i
n

MAP APn i
= ∑

=
 

'n' is the number of instances of test data set related to the category. 
In the PFT fuzzy block, initially configured with 15 distinct rule sets, each rule is allotted to a 
specific class for the inference mechanism. When the data set was processed in the block, 11 
distinct classes were correctly activated and 2 classes were wrongly activated. Notably, among 
the test dataset health records, four instances exhibited deviations from expert expectations 
due to false-positive responses within two distinct classes, specifically C8 and C10. Among 
the three misfiring classes, the breakdown of performance metrics is as follows: Class C3 
correctly classified 6 instances out of the total 7 test data mapped to it, leading to a class 
precision of 0.86. Class C5 achieved a 0.60 precision rate, with 2 misclassifications among the 
5 instances classified. Class C6 demonstrated a 0.66 precision rate, encountering 1 failure out 
of 3 classified instances. The classes C8 and C10 exhibited 0 recall and F1score values as the 
result of wrong activations. Experts assessed two COPD cases, but the system erroneously 
activated class C8, categorizing them as mixed diseases. As a result, experts recommended the 
addition of further criteria for class C8 labeled as mixed, and this was subsequently 
incorporated into the system. Similarly, the system erroneously classified two instances from 
the dataset as mildly obstructive, with an incorrect activation of class C10, while experts had 
identified them as cases of asthma. The remaining classes showcased a success rate of 1. The 
macro-averaged precision of classes in the PFT fuzzy block is calculated to be 0.93. Fig. 8 
represents the performance metrics of the PFT fuzzy block in terms of precision, recall, and 
F1score. Other clinical parameter blocks, namely the breathlessness test block and the 
bronchodilator reversibility test block, are less complex in functional aspects and have a 100% 
success rate in classification. Similarly, the personal health data block, containing observable 
patient-specific data like age, gender, and BMI, also achieved a 100% success rate in its 
classifications. 
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Fig. 8. Presents precision, recall and F1 score for each activated class of PFT fuzzy block for the given 

data set. (Source : Experts' evaluation) 
 

We calculate the Average Precision (AP) for each instance in the dataset concerning the 
selected and ranked classes within the fuzzy block. This evaluation helps in assessing the 
top-N relevant diagnostic result recommendations offered by the fuzzy block. It can also assist 
in refining the structure of the knowledge base by adjusting fuzzy sets or formulating new 
rules to account for any missing diagnostic outcome criteria. Specifically, for the Pulmonary 
Function Test (PFT) block, we categorize the dataset into normal, obstructive, and restrictive 
outcomes. Our evaluation focuses on the precision of the top 2 recommendations within each 
of these three categories, and we subsequently calculate the mean precision across these 
categories. Calculating the mean of the average precision within each category offers valuable 
insights into the model's ability to provide accurate recommendations. In the dataset examined 
for obstructive conditions, four instances exhibited deviations from expert assessments. In 
these instances, the correct class was ranked second in the list based on the highest activation 
scores, leading to a reduced Average Precision (AP) and a resulting Mean Average Precision 
of 0.93. On the other hand, the other categories achieved a clean score of 1, indicating an 
accurate diagnosis. Fig. 9 illustrates the system's performance in terms of MAP scores for lung 
conditions categorized as normal, obstructive, or restrictive in the PFT fuzzy block. 
 

 
Fig. 9. Presents measure of Mean Average Precision for examined pulmonary function test 

outcomes.(Source : Experts' evaluation). 
 
The rule bases within the combiner block are constructed from the combination of consequent 
parts derived from each connected fuzzy block. The creation of rules within the combiner rule 
base involves generating permutations and combinations of potential consequent parts 
originating from various fuzzy blocks. Drawing from expert knowledge and scrutinized health 



300                                                                                   Navin K et al.: Knowledge Based Recommender System for  
Disease Diagnostic and Treatment Using Adaptive Fuzzy-Blocks 

records, a total of 130 distinct rule sets were meticulously formulated to facilitate the combiner 
block's inference mechanism. Four instances of deviating records were identified, primarily 
attributed to missing criteria that resulted in erroneous judgments. Involving a total of 41 firing 
rules, the system achieved an impressive average class accuracy of 96%. Deviations in 
treatment recommendations within these records were traced back to patients presenting with 
additional health concerns. The resolution of these discrepancies hinges on the effective 
integration of those missing criteria. This could be effectively addressed through the 
introduction of an auxiliary block, which could provide valuable insights and alternative 
treatment options, aligning the expertise of actual physician experts. In the appendix section, 
Table 10 and Table 11 display selected records of patients for which the outcomes of discrete 
fuzzy blocks provide diagnostic results and a holistic diagnostic report with treatment 
recommendations  realized by the fuzzy expert system. 

5.2 Discussion 
The strategy for implementation of the proposed model should be carried out incrementally. 
The initial setup of the system should involve configuring it with a defined set of primary 
criteria to yield coarse-grained options for clinical pathways as recommendations. This 
coarse-grained approach, broad in nature for providing decision support, provides an array of 
options that serve as valuable suggestions for decision support. Any disparities observed in the 
outcome recommendations can often be attributed to the absence of certain criteria within the 
system. By progressively integrating additional criteria for decision support and aligning them 
with an updated training set, the system can generate finer-grained recommendations. These 
refined suggestions are more precise, accurate, and intricately detailed. It's useful to 
conceptualize each criterion as a distinct fuzzy block within the proposed model. 

It is important to note that, within a given fuzzy block, the configuration of rule sets is 
tailored to the relevant domain knowledge of experts and validated sample datasets. Tuning a 
fuzzy rule-based classifier is typically an iterative process, and it's crucial to strike a balance 
between over-fitting and under-fitting. The development process hinges on the assessment of 
the fitness value, which is derived from measuring the class strength within the training dataset. 
This evaluation subsequently contributes to the enhancement of overall accuracy. Modifying 
the configuration of a fuzzy block can be accomplished by refining the fuzzification process, 
achieved through the adjustment of the fuzzy range intervals of parameters. If required, a 
method of generating new rules can be employed to accommodate instances that have not been 
encountered before. This rule generation technique is implemented to ensure that these 
previously unseen instances align with the established fitness value threshold. 

One of the challenges associated with the proposed model is its dependence on expert input, 
which raises the following concerns: the input may be partial, inconsistent, or biased, and it 
can be influenced by personal preferences that may deviate from accepted norms. Future work 
involves the integration of an evidence-based framework by incorporating examined health 
records to construct a knowledge-based structure and inference mechanism. 

6. Conclusion 
The proposed work devises a model for knowledge-based recommender systems based on 
fuzzy rule-based inference systems. The experimental results indicate a high degree of 
compliance between the expert physicians' diagnostics and treatment recommendations and 
the configured recommender system. The model could be developed as a reliable tool 
mimicking an expert physician's expertise. The main advantage of the proposed model is its 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024             301 

adaptability, as it provides an easy way of configuring new criteria by adding new fuzzy 
blocks and also provides the facility to fine tune the existing system configurations to achieve 
the best results. Similarly, the proposed model can be configured for other diseases and 
treatments too. The model is generic in nature to provide decision support to address any other 
domain problems that fit into a similar scheme of things. Although the recommendations 
provided by the proposed model for decision support provided expected results and complied 
with the expert physician's analysis for the given basic lung disease under consideration, future 
work would involve configuring the system for complex diagnostics, which can involve 
multiple-class selections from a fuzzy block with scores of class activation strength playing a 
vital role in rule formation. It requires extensive expert support and a sufficient sample data set 
in the form of well-analyzed health records to model the system. 

Appendix 

Table 1. Shows parameters, linguistic label and interval values for PFT(Pulmonary Function Test) 
block. (Source : mMRC guidelines) 

Parameters Param1 Param2 Param3 
 

Param4  Param5 
 

 
 
 

FEV
1 

Linguisti
c 

Very severe 
impairment 

(VS) 

Severe 
impairment 

(SI) 

Moderately 
severe 

impairment(M
S) 

Moderate 
impairment(MI

) 

Normal(N
) 

mMRC 
Range 

<  49% 50% -59% 60% -69% 70% -79% > 80% 

Fuzzy 
Interval  

(0,1)  
(40,1) 
(49,0) 

(45, 0) (50,1) 
(65,1) (69,0) 

(55, 0) (60,1)   
(65,1)  
 (69,0) 

(65, 0) (70,1) 
(75,1) 
(80,0) 

(75, 0) 
(80,1) 
(95,1) 

 
 

FVC 

Linguisti
c 

FVC 
Abnormal(AN

) 

FVC  
Normal(NR) 

   

mMRC 
Range 

< 80% >80%    

Fuzzy 
Interval 

(0, 1) 
 (70,1) (90,0) 

(70,0) (80,1) 
(90,1) 

   

 
 

RAT  

Linguisti
c 

 Ratio 
Abnormal(AN

) 

Ratio 
Normal(NR) 

   

mMRC 
Range 

< 70% >70%    

Fuzzy 
Interval 

(0, 1) (65, 1) 
(75,0) 

(65,0) 
(70,1)(90,1) 
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Table 2. Shows rule base for PFT Block. (Source : Experts' guidelines) 
Rule 

# 
Fuzzy Rule Class 

Label  
Diagnostic Description 

#1     If RAT is normal and FVC is normal and  FEV1 is 
normal 

C1 No Issues 

#2 If  FEV1 is severe or very severe and RAT is 
abnormal  and FVC is abnormal  

C2 Obstructive lung disease, 
likelihood of COPD with 

mixed features. 
#3 If  FEV1 is severe or very severe and RAT is 

abnormal 
C3 Obstructive lung 

disease ,There is a possibility 
of COPD or asthma . 

#4 IF FEV1 is moderate or moderately severe and 
RAT is abnormal and FVC is normal. 

C4 Obstructive lung 
disease ,there is a likelihood of 

asthma.  
#5  if FEV1 is moderately severe and FVC is 

abnormal and RAT is abnormal.  
C5 Mixed abnormality 

#6 If FVC is abnormal and RAT is normal  C6 Restrictive lung disease 
with moderate impairment 

#7 If  FEV1 is moderate or moderately severe and 
RAT is abnormal 

C7 Mild obstructive lung 
disease , other than asthma or 

COPD 
#8 If FEV1 is moderate or moderately severe and 

FVC is normal  
C7 Mild obstructive lung disease , 

other than asthma or COPD 
* Only minimal rules used for initial configuration. 

 
Table 3. Shows parameters, linguistic label and interval values for Breathlessness Test block.  

(Source : mMRC guidelines) 
Parameters Param1 Param2 Param3 

 
Param4  Param5 

 
 

Dyspnea 
Scale 

Linguistic Grade0 Grade1 Grade2 Grade3 Grade4 
Symptoms  

score 
Range 

0-2 1-3 243 3-5 4-5 

Fuzzy 
Interval  

(0, 1) 
(1,1)(2,0)) 

(1,0) 
(2,1)(3,0) 

(2,0) 
(3,1)(4,0) 

(3,0)(4,1)(5,0) (4,0)(5,1)(6,1) 

Table 4. Shows rule base for Breathlessness Test Block. (Source : Experts' guidelines) 
Rule 

# 
Fuzzy Rule Class 

Label  
Diagnostic Description 

#1 If Dyspnea Scale is Grade 0 C1 Grade0-"I only get breathless with 
strenuous exercise 

#2 If Dyspnea Scale is Grade 1 C2 Grade1-"I get short of breath when 
hurrying on the level or up a slight hill" 

#3 If Dyspnea Scale is Grade2 C3 Grade2-"I walk slower than people of the 
same age on the level because of 
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breathlessness or have to stop for breath when 
walking at my own pace on the level" 

#4 If Dyspnea Scale is Grade 3 C4 Grade3-"I stop for breath after walking 
100 yards or after a few minutes on the level" 

#5  If Dyspnea Scale is Grade 4 C5 Grade4-" I am too breathless to leave the 
house" 

Table 5. Shows parameters, linguistic label and interval values for BDR block. (Source : mMRC 
guidelines) 

Parameters Param1 Param2 Param3 
 

 
 
 

ΔFEV 

Linguistic Non reversible 
(NRV)  

Probably reversible 
(PRV)  

Reversible  (RV) 

mMRC Range <  9% 9% -12% > 12% 
Fuzzy Interval  (0, 1) (7, 1) (9,0) (7,0)  (9,1) 

(12,1)(13,0) 
(11,0) (12,1) (14,1) 

Table 6. Shows Rule Base for BDR Block. (Source : Experts' guidelines) 
Rule 

# 
Fuzzy Rule Class 

Label  
Diagnostic Description 

#1 If ΔFEV  is Non-reversible C1 Identified  COPD  
#2 If ΔFEV is probably 

reversible 
C2 Take Re-Test 

#3 If ΔFEV is  reversible C3 Identified Asthma  

Table 7. Shows parameters, linguistic label and interval values for PHD (Personal Health Data) block. 
(Source : mMRC guidelines, expert guidelines) 

Parameters Param1 Param2 Param3 
 

Param4  

 
 
 

BMI 

Linguistic Under 
weight(UW) 

Normal weight(NW) Over weight(OW) Obese(OB) 

mMRC 
Range 

>18.5 18.5-25 25-30 < 30 

Fuzzy 
Interval  

(0, 1) (18.5, 
1) (19.5,0) 

(17.5,0) 
(18.5,1)(25,1)(26,0) 

(24.5,0) 
(25,1)(30,1)(32,0) 

(29,0) 
(30,1)(34,1) 

 
 

Age 

Linguistic Normal 
Age(NA) 

Old Age(OA)   

 Range >65 years < 65 years   

Fuzzy 
Interval 

(0, 1)(45, 1) 
(65,0) 

(55,0) (65,1)(75,1)   

 
 

Linguistic  Male(M) Female(F)   

Range 1 2   
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Gender  Fuzzy 
Interval 

(1, 1)  (2,1)    

Table 8. Shows Rule Base for PHD Block. (Source : Experts' guidelines) 
Rule 

# 
Fuzzy Rule Class 

Label  
Diagnostic Description 

#1 If age is normal age and BMI is normal 
and gender is  male or female 

C1 Predictability of  result 100 % 

#2 If age is old age and BMI is normal and 
gender is  male  

C2 Predictability of result 95 % 

#3 If age is old age and BMI is obese  and 
gender is  male or female 

C3 Predictability of result 90 % 

#4 If age is normal age and BMI is 
overweight and gender is  male 

C1 Predictability of  result 100 % 

#5  If age is normal age and BMI is 
overweight and gender is  female 

C2 Predictability of result 95 % 

#6 If age is old age and BMI is normal and 
gender is  female 

C3 Predictability of result 90 % 

* Only minimal rules used for initial configuration.. 

Table 9. Shows rule base for Combiner Block. (Source : Experts' guidelines) 
Rule 

# 
Fuzzy Rule Class 

Label  
Diagnostic Description 

#1 If B1.C1 and 
B2.C1 

K1 No Issues 

#2 If B1.C1 and 
B2.C2 

K1 No Issues 

#3 If B1.C2 and 
B2.C2  

K2 Obstructive lung disease, likelihood of COPD 
with mixed features, with  Grade 1 dyspnea scale take 

BDR test 
#4 If B1.C3 and 

B2.C2  
K3 Obstructive lung disease ,There is a possibility of 

COPD or asthma , with  Grade 1 dyspnea scale take 
BDR test 

#5  If B1.C4 and 
B2.C2  

K4 Obstructive lung disease, there is a likelihood of 
asthma, with Grade 1 dyspnea scale take BDR test 

#6 If B1.C5 and 
B2.C2  

K5 Mixed abnormality, with Grade 1 dyspnea scale 

#7 If B1.C6 and 
B2.C2  

K6 Restrictive lung disease with moderate 
impairment, with Grade 1 dyspnea scale 

#8 If B1.C7 and 
B2.C2  

K7 Obstructive lung disease, other than asthma or 
COPD, with Grade 1 dyspnea scale,take BDR test 

#9 if K2 or K3 and 
B3.C1 

M1 Indentified COPD with Grade 1 dyspnea scale 

#10 if K2 or K3 and 
B3.C2 

M2 Probably reversible with Grade 1 dyspnea scale 
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#11 If K4 and B3.C3 M3 Indentified Asthma with Grade 1 dyspnea scale 

#12 If K1 M4 Normal result 

#13 If K5                                                                            M5 Mixed abnormality with Grade 1 dyspnea scale. 

#14 If K6                                                                            M6 Restrictive lung disease with moderate 
impairment and Grade 1 dyspnea scale. 

#15 If K7 M7 Mild obstructive lung disease possibly other than 
asthma / COPD and Grade 1 dyspnea scale.  

#16 if M1 and B4.C1 O1 Indentified COPD with Grade 1 dyspnea scale, 
result predictability 100%. Recommend treatment 

process TP1. 
#17 if M2 and B4.C1 O2 Probably reversible with Grade 1 dyspnea 

scalewith Grade 1 dyspnea scale, result predictability 
95% Recommend treatment process TP2. 

#18 if M3 and B4.C1 O3 Indentified Asthma with Grade 1 dyspnea scale 
scale, result predictability 100% Recommend 

treatment process TP3. 
#19 if M4 and B4.C1 O4 Normal result. result predictability 100%. 

Recommend treatment process TP4 
#20 if M5 and B4.C1 O5 Mixed abnormality with Grade 1 dyspnea scale. 

result predictability 100%. Recommend treatment 
process TP5. 

#21 if M6 and B4.C1 O6 Restrictive lung disease with moderate 
impairment and Grade 1 dyspnea scale. result 

predictability 100%. Recommend treatment process 
TP6. 

#22 if M7 and B4.C1 O7 Mild obstructive lung disease with Grade 1 
dyspnea scale. result predictability 100% Recommend 

treatment process TP7. 
#23 if M7 and B4.C2 O4 Normal result. result predictability 100%. Recommend 

treatment process TP4 
* Only minimal rules used for initial configuration. 

Table 10. A sample representation of tests performed with developed fuzzy recommender system. 
(Source : System evaluation) 

# PFT Block (B1) BGR 
Block 
(B2) 

BDR 
Block(

B3) 

Personal Health Data 
Block (B4) 

B1 B2 B3 B4 Combine
r (Fired 
Rules) 

P FEV1 FVC Ratio Dyspnea 
Scale 

Δ 
FEV1 

BMI Age Gen Csel Csel Csel Csel KselMsel,
Osel 

 
#P
1 

56% 67% 83% 2.5 - 18.8 36 1  
C6 

 
C2 

 
- 

 
C1 

 
K6, M1, 

O6 MS AN NR Grade2 - NW NA M 

 68% 84% 81% 2 - 22 43 2      
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#P
2 

MI NR AN Grade1 - NW NA F C7 C2 - C1 K7, M7, 
O7 

 
#P
3 

45% 69% 65% 2.5 5% 20 38 1  
C2 

 
C2 

 
C1 

 
C1 

 
K2, M1, 

O1 
VS AN AN Grade1 NRV NW NA M 

 
#P
4 

62% 93% 67% 2 11% 19 43 1  
C4 

 
C2 

 
C3 

 
C1 

 
K4, M3, 

O3 SM NR AN Grade2 RV NW NA M 

 
#P
5 

53% 82% 65% 2.5 6% 20.4 31 1  
C3 

 
C2 

 
C1 

 
C1 

 
K3, M1, 

O1 SI NR AN Grade2 NRV NW NA M 

 
#P
6 

86% 90% 96% 1.5 -- 22 38 2  
C1 

 
C2 

 
- 

 
C1 

 
K1, M4, 

O4 NR NR NR Grade1 - NW NA F 

 
#P
7 

68% 82% 83% 2 - 17 75 1  
C7 

 
C2 

 
- 

 
C3 

 
K7, M7, 

O4 MS NR NR Grade2 - UW OA M 

 
#P
8 

49% 74% 66% 2.5 - 21 53 1  
C5 

 
C2 

-  
C1 

 
K5,M5,O

5 SI AN AN Grade2 - NW  M 

 
#P
9 

72% 68% 105% 2 -- 24.5 45 1  
C6 

 
C2 

 
- 

 
C1 

 
K6, M6, 

O6 MI AN NR Grade2 - NW NA M 

 
#P
10 

78% 90% 86% 2.5 - 19 39 2  
C1 

 
C2 

 
- 

 
C1 

 
K1, M4, 

O4 NR NR NR Grade2 - NW NA F 

Table 11. Shows the diagnostics and treatment description for Table 15 results. (Source : Experts' 
evaluation) 

P# Diagnostics and Treatment Description Experts 
Compliance 

#P1 Restrictive lung disease with moderate impairment and Grade 1 dyspnea scale. 
result predictability 100% ; TP6 

Yes 

# P2 Mild obstructive lung disease with Grade 1 dyspnea scale. result predictability 
100%. Recommend treatment process TP7. 

Yes 

#P3 Indentified COPD with Grade 1 dyspnea scale, result predictability 100%. 
Recommend treatment process TP1. 

Yes, Further 
evaluation to 

check for Mixed  
#P4 Indentified Asthma with Grade 1 dyspnea scale scale, result predictability 

100% Recommend treatment process TP3. 
Yes 

#P5  Indentified COPD with Grade 1 dyspnea scale, result predictability 100%. 
Recommend treatment process TP1 

Yes 

#P6 Normal result. result predictability 100%. Recommend treatment process TP4 Yes 

#P7 Normal result. result predictability 100%. Recommend treatment process TP4 Yes, Due to age 
factor results are 
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mapped to normal 

#P8 Indentified Asthma with Grade 1 dyspnea scale scale, result predictability 
100%. Recommend treatment process TP3. 

Yes 

#P9 Restrictive lung disease with moderate impairment and Grade 1 dyspnea scale. 
result predictability 100%.  Recommend treatment process TP6. 

Yes 

#P10 Normal result. result predictability 100%. Recommend treatment process TP4 Yes 
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