Journal of the Korean Society for Industrial and Applied Mathematics
/
v.28
no.1
/
pp.1-21
/
2024
This review comprehensively explores the evolution, theoretical underpinnings, variations, and applications of diffusion models. Originating as a generative framework, diffusion models have rapidly ascended to the forefront of machine learning research, owing to their exceptional capability, stability, and versatility. We dissect the core principles driving diffusion processes, elucidating their mathematical foundations and the mechanisms by which they iteratively refine noise into structured data. We highlight pivotal advancements and the integration of auxiliary techniques that have significantly enhanced their efficiency and stability. Variants such as bridges that broaden the applicability of diffusion models to wider domains are introduced. We put special emphasis on the ability of diffusion models as a crucial foundation model, with modalities ranging from image, 3D assets, and video. The role of diffusion models as a general foundation model leads to its versatility in many of the downstream tasks such as solving inverse problems and image editing. Through this review, we aim to provide a thorough and accessible compendium for both newcomers and seasoned researchers in the field.
As information and communication technologies are being developed so rapidly, education research is actively conducted to provide optimal learning for each student using big data and artificial intelligence technology. In this study, using the mathematics learning data of elementary school 5th to 6th graders conducting blended mathematics classes, we tried to find out what factors predict mathematics academic achievement and developed an artificial intelligence model that predicts mathematics academic performance using the results. Math learning propensity, LMS data, and evaluation results of 205 elementary school students had analyzed with a random forest model. Confidence, anxiety, interest, self-management, and confidence in math learning strategy were included as mathematics learning disposition. The progress rate, number of learning times, and learning time of the e-learning site were collected as LMS data. For evaluation data, results of diagnostic test and unit test were used. As a result of the analysis it was found that the mathematics learning strategy was the most important factor in predicting low-achieving students among mathematics learning propensities. The LMS training data had a negligible effect on the prediction. This study suggests that an AI model can predict low-achieving students with learning data generated in a blended math class. In addition, it is expected that the results of the analysis will provide specific information for teachers to evaluate and give feedback to students.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.407-408
/
2023
In this paper, we intend to develop a multimodal algorithm that secures recognition performance of over 95% in daytime illumination environments and secures recognition performance of over 90% in bad weather (rainfall and snow) and night illumination environments.
The stethoscope has long been used for the examination of patients, but the importance of auscultation has declined due to its several limitations and the development of other diagnostic tools. However, auscultation is still recognized as a primary diagnostic device because it is non-invasive and provides valuable information in real-time. To supplement the limitations of existing stethoscopes, digital stethoscopes with machine learning (ML) algorithms have been developed. Thus, now we can record and share respiratory sounds and artificial intelligence (AI)-assisted auscultation using ML algorithms distinguishes the type of sounds. Recently, the demands for remote care and non-face-to-face treatment diseases requiring isolation such as coronavirus disease 2019 (COVID-19) infection increased. To address these problems, wireless and wearable stethoscopes are being developed with the advances in battery technology and integrated sensors. This review provides the history of the stethoscope and classification of respiratory sounds, describes ML algorithms, and introduces new auscultation methods based on AI-assisted analysis and wireless or wearable stethoscopes.
As many changes in the future society represented by the age of artificial intelligence(AI) are expected to come, efforts are being made to draw the shape of the future education and various research methods are being employed to support the attempts. While many research studies use methods for deriving generalized results such as expert survey and trend analysis in along with a review of literature, there are attempts to apply the scenario methodology to explore ideas and information needed within a changing context. A scenario method, one of the experiential learning strategies, aims to seek various and alternative approaches by establishing a plan from the present conditions considering future changes. In this study, in-service teachers' perceptions and expectations of the interactivity between human and AI teachers were visualized by applying the role-play presentation technique that grafted the concept of role-play game to the scenario method. In addition, the mandal-art method was introduced to support in conducting productive discussion during the teachers' collaboration. This method appeared to help to depict teachers' perceptions of AI teachers in the detailed and concrete form, which may flow in the abstract otherwise. Through analyses of the teachers' role-play presentations with the implementation of the madal-art method it was suggested that most teachers would want to collaborate with an AI teacher for improved instruction and individualized student learning while they would take the instructional authority over the AI teacher in the classroom.
In real educational field, there are cases that concrete problematic situations are introduced after abstract concepts are taught on the contrary to process that abstract from concrete contexts. In other words, there are cases that abstract knowledge has to be concreted. Freudenthal expresses this situation to antidogmatical inversion and indicates negative opinion. However, it is open to doubt that every class situation can proceed to abstract that begins from concrete situations or concrete materials. This study has done a comparative analysis in difference of mathematical thinking between a process that builds abstract context after being abstracted from concrete materials and that concretes abstract concepts to concrete situations and attempts to examine educational implication. For this, this study analyzed the mathematical thinking in the abstract process of concrete materials by manipulating AiC analysis tools. Based on the AiC analysis tools, this study analyzed mathematical thinking in the concrete process of abstract concept by using the way this researcher came up with. This study results that these two processes have opposite learning flow each other and significant mathematical thinking can be induced from concrete process of abstract knowledge as well as abstraction of concrete materials.
The purpose of this study is to discuss the types of algorithms and data categories in AI education for elementary school students. The study surveyed 11 pre-elementary teachers after providing education and practice on various data, artificial intelligence algorithm, and AI education platform for 15 weeks. The categories of data and algorithms considering the elementary school level, and educational tools were presented, and their suitability was analyzed. Through the questionnaire, it was concluded that it is most suitable for the teacher to select and preprocess data in advance according to the purpose of the class, and the classification and prediction algorithms are suitable for elementary AI education. In addition, it was confirmed that Entry is most suitable as an AI educational tool, and materials that explain mathematical knowledge are needed to educate the concept of learning of AI. This study is meaningful in that it specifically presents the categories of algorithms and data with in AI education for elementary school students, and analyzes the need for related mathematics education and appropriate AI educational tools.
The purpose of this note is to study the relation between Heyting algebra and t-algebra which is the dual concept of BCK-algebra. We define t-algebra with binary operation ${\rhd}$ which is a generalization of the implication in the Heyting algebra, and define a bounded ness and commutativity of it, and then characterize a Heyting algebra and a Boolean algebra as a bounded commutative t-algebra X satisfying $x=(x{\rhd}y){\rhd}x$ for all $x,y{\in}X$.
In this paper, we obtain characterizations of continuous distributions based on the independent property of generalized record values extending the characterization results reported by Jin and Lee [4], Skřivánková and Juhás [8]. Also, example of special cases of general classes as Bur types, Pareto, power and Weibull distribution are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.