• Title/Summary/Keyword: AI chatbot

Search Result 119, Processing Time 0.023 seconds

Interaction Between Students and Generative Artificial Intelligence in Critical Mineral Inquiry Using Chatbots (챗봇 활용 핵심광물 탐구에서 나타난 학생과 생성형 인공지능의 상호작용)

  • Sueim Chung;Jeongchan Kim;Donghee Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.675-692
    • /
    • 2023
  • This study used a Chatbot, a generative artificial intelligence (AI), to analyze the interaction between the Chatbot and students when exploring critical minerals from an epistemological aspect. The results, issues to be kept in mind in the teaching and learning process using AI were discussed in terms of the role of the teacher, the goals of education, and the characteristics of knowledge. For this study, we conducted a three-session science education program using a Chatbot for 19 high school students and analyzed the reports written by the students. As a result, in terms of form, the students' questions included search-type questions and non-search-type questions, and in terms of content, in addition to various questions asking about the characteristics of the target, there were also questions requiring a judgment by combining various data. In general, students had a questioning strategy that distinguished what they should aim for and what they should avoid. The Chatbot's answer had a certain form and consisted of three parts: an introduction, a body, and a conclusion. In particular, the conclusion included commentary or opinions with opinions on the content, and in this, value judgments and the nature of science were revealed. The interaction between the Chatbot and the student was clearly evident in the process in which the student organized questions in response to the Chatbot's answers. Depending on whether they were based on the answer, independent or derived questions appeared, and depending on the direction of comprehensiveness and specificity, superordinate, subordinate, or parallel questions appeared. Students also responded to the chatbot's answers with questions that included critical thinking skills. Based on these results, we discovered that there are inherent limitations between Chatbots and students, unlike general classes where teachers and students interact. In other words, there is 'limited interaction' and the teacher's role to complement this was discussed, and the goals of learning using AI and the characteristics of the knowledge they provide were also discussed.

Pilot Development of a 'Clinical Performance Examination (CPX) Practicing Chatbot' Utilizing Prompt Engineering (프롬프트 엔지니어링(Prompt Engineering)을 활용한 '진료수행시험 연습용 챗봇(CPX Practicing Chatbot)' 시범 개발)

  • Jundong Kim;Hye-Yoon Lee;Ji-Hwan Kim;Chang-Eop Kim
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.203-214
    • /
    • 2024
  • Objectives: In the context of competency-based education emphasized in Korean Medicine, this study aimed to develop a pilot version of a CPX (Clinical Performance Examination) Practicing Chatbot utilizing large language models with prompt engineering. Methods: A standardized patient scenario was acquired from the National Institute of Korean Medicine and transformed into text format. Prompt engineering was then conducted using role prompting and few-shot prompting techniques. The GPT-4 API was employed, and a web application was created using the gradio package. An internal evaluation criterion was established for the quantitative assessment of the chatbot's performance. Results: The chatbot was implemented and evaluated based on the internal evaluation criterion. It demonstrated relatively high correctness and compliance. However, there is a need for improvement in confidentiality and naturalness. Conclusions: This study successfully piloted the CPX Practicing Chatbot, revealing the potential for developing educational models using AI technology in the field of Korean Medicine. Additionally, it identified limitations and provided insights for future developmental directions.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a BERGPT-chatbot, a domestic AI chatbot that can alleviate negative emotions based on text input such as 'Replika'. We made BERGPT-chatbot into a chatbot capable of mitigating negative emotions by pipelined two models, KR-BERT and KoGPT2-chatbot. We applied a creative method of giving emotions to unrefined everyday datasets through KR-BERT, and learning additional datasets through KoGPT2-chatbot. The development background of BERGPT-chatbot is as follows. Currently, the number of people with depression is increasing all over the world. This phenomenon is emerging as a more serious problem due to COVID-19, which causes people to increase long-term indoor living or limit interpersonal relationships. Overseas artificial intelligence chatbots aimed at relieving negative emotions or taking care of mental health care, have increased in use due to the pandemic. In Korea, Psychological diagnosis chatbots similar to those of overseas cases are being operated. However, as the domestic chatbot is a system that outputs a button-based answer rather than a text input-based answer, when compared to overseas chatbots, domestic chatbots remain at a low level of diagnosing human psychology. Therefore, we proposed a chatbot that helps mitigating negative emotions through BERGPT-chatbot. Finally, we compared BERGPT-chatbot and KoGPT2-chatbot through 'Perplexity', an internal evaluation metric for evaluating language models, and showed the superity of BERGPT-chatbot.

Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics (GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석)

  • Misun Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • The rapid advancement of generative AI has ushered in an era where anyone can create and freely utilize personalized chatbots without the need for programming expertise. This study aimed to develop a customized chatbot based on OpenAI's GPTs for the purpose of pre-service teacher education and to analyze its educational performance in mathematics as assessed by educators guiding pre-service teachers. Responses to identical questions from a general-purpose chatbot (ChatGPT), a customized GPTs-based chatbot, and an elementary mathematics education expert were compared. The expert's responses received an average score of 4.52, while the customized GPTs-based chatbot received an average score of 3.73, indicating that the latter's performance did not reach the expert level. However, the customized GPTs-based chatbot's score, which was close to "adequate" on a 5-point scale, suggests its potential educational utility. On the other hand, the general-purpose chatbot, ChatGPT, received a lower average score of 2.86, with feedback indicating that its responses were not systematic and remained at a general level, making it less suitable for use in mathematics education. Despite the proven educational effectiveness of conventional customized chatbots, the time and cost associated with their development have been significant barriers. However, with the advent of GPTs services, anyone can now easily create chatbots tailored to both educators and learners, with responses that achieve a certain level of mathematics educational validity, thereby offering effective utilization across various aspects of mathematics education.

Korean Q&A Chatbot for COVID-19 News Domains Using Machine Reading Comprehension (기계 독해를 이용한 COVID-19 뉴스 도메인의 한국어 질의응답 챗봇)

  • Lee, Taemin;Park, Kinam;Park, Jeongbae;Jeong, Younghee;Chae, Jeongmin;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.540-542
    • /
    • 2020
  • 코로나 19와 관련한 다양한 정보 확인 욕구를 충족하기 위해 한국어 뉴스 데이터 기반의 질의응답 챗봇을 설계하고 구현하였다. BM25 기반의 문서 검색기, 사전 언어 모형인 KoBERT 기반의 문서 독해기, 정답 생성기의 세 가지 모듈을 중심으로 시스템을 설계하였다. 뉴스, 위키, 통계 정보를 수집하여 웹 기반의 챗봇 인터페이스로 질의응답이 가능하도록 구현하였다. 구현 결과는 http://demo.tmkor.com:36200/mrcv2 페이지에서 접근 및 사용을 할 수 있다.

  • PDF

AI Chatbot Providing Real-Time Public Transportation and Route Information

  • Lee, So Young;Kim, Hye Min;Lee, Si Hyun;Ha, Jung Hyun;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.9-17
    • /
    • 2019
  • As the artificial intelligence technology has developed recently, researches on chatbots that provide information and contents desired by users through an interactive interface have become active. Since chatbots require a variety of natural language processing technology and domain knowledge including typos and slang, it is currently limited to develop chatbots that can carry on daily conversations in a general-purpose domain. In this study, we propose an artificial intelligence chatbot that can provide real-time public traffic information and route information. The proposed chatbot has an advantage that it can understand the intention and requirements of the user through the conversation on the messenger platform without map application.

Identifying Issue Changes of AI Chatbot 'Iruda' Case and Its Implications (AI 챗봇 '이루다' 논란의 이슈 변화와 시사점)

  • Choi, S.S.;Hong, A.R.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • The controversy over Artificial Intelligence (AI) chatbot "Iruda," which suspended its service 20 days after its launch, can be seen as the first case to inform the public of AI ethics issues. Based on this context, this study examines the controversy and social semantic formation of "Iruda" service cases using news topic modeling techniques. 963-news articles were used for the analysis, and the event's duration was analyzed based on major events, such as service start, controversy, and suspension, to understand the progress. From the analyses results, we obtain major keywords and a total of 16 topics (5, 4, 7) from the period. Finally, the implications for the development and utilization of AI services obtained through this controversy were discussed based on the analysis results.

A Case Study on AI-STEAM Education through Making Chatbot for Preservice Teachers (예비교사를 위한 챗봇 제작 AI-STEAM 교육 사례 연구)

  • Kim, Ji-Yun;Kim, Kwihoon;Lee, Tae-Wuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.135-138
    • /
    • 2021
  • 본 논문에서는 예비교사를 위한 AI-STEAM 교육 사례로서 봇빌더를 활용한 챗봇 제작 교육을 실시하고 이를 바탕으로 챗봇 제작 AI-STEAM 교육을 위한 시사점을 제시하였다. 최근 관련 정책이 발표되는 등 인공지능 교육이 학교에서 실시되기 위한 기반이 마련되었다. 인공지능 교육이 학교 현장에 제대로 안착되기 위해서는 현직 교사들에 대한 보수교육 뿐 아니라 교육 및 사범대학의 교원양성과정에서도 인공지능 교육이 실시되어야 할 필요가 있다. 본 논문에서는 교사들의 인공지능 교사교육 요구를 바탕으로 AI-STEAM을 제안하고 다양한 전공의 예비교사를 위한 챗봇 제작 AI-STEAM 교양교육 및 학생 작품 사례를 제시하였다.

  • PDF

A Study on Chatbot Profile Images Depending on the Purpose of Use (사용 목적에 따른 챗봇의 프로필 이미지 연구)

  • Kang, Minjeong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.118-129
    • /
    • 2018
  • In AI chatbot service via a messenger, a profile image of the chatbot is the first thing that users see to communicate with the chatbot. This profile image not only manages an impression about the profile owner in SNS on followers, but also makes an important impression about chatbot services on users. Thus motivated, this study investigates proper profile images tailored for the types of chatbot services and users. Specifically, I reviewed the preferred images and expressions of chatbots for each purpose of chatbot service. Then, in a case study, I collected and analyzed the representative chatbot profile images for the purpose of fun and counseling. The profile images are categorized as robot, human, animal, and abstract images. Based on these categories, I surveyed the preferred profile image of the chatbot service in either the text type or image type alternatives. For the purpose of fun, in the text version, I found that both men and women preferred a human image to others. However, in the image version, men preferred woman and robot images while women preferred cute animation character and robot images. For counseling services, both men and women preferred woman and animal images most, which is similar to the results of the text version of questionnaires as well. While both genders consistently preferred real photo images, women tend to like abstract images more than men do. I expect that the results of this study would be useful to develop the proper profile images of AI chatbot for each service purpose.

Utilization of Generative Artificial Intelligence Chatbot for Training in Suicide Risk Assessment of Depressed Patients: Focusing on Students at a College of Korean Medicine (우울증 환자의 자살 위험 평가의 훈련을 위한 생성형 인공지능 챗봇의 의학적 교육 활용 사례: 일개 한의과대학 학생을 중심으로)

  • Chan-Young Kwon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.35 no.2
    • /
    • pp.153-162
    • /
    • 2024
  • Objectives: Among OECD countries, South Korea has been having the highest suicide rate since 2018, with 24.1 deaths per 100,000 people reported in 2020. The objectie of this study was to examine the use of generative artificial intellicence (AI) chatbots to train third-year Korean medicine (KM) students in conducting suicide risk assessments for patients with depressive disorders to train students for their clinical practice skills. Methods: The Claude 3 Sonnet model was utilized for chatbot simulations. Students performed mock consultations using standardized suicide risk assessment tools including Ask Suicide-Screening Questions (ASQ) tool and ASQ Brief Suicide Safety Assessment. Experiences and attitudes were collected through an anonymous online survey. Responses were rated on a 1~5 Likert scale. Results: Thirty-six students aged 22~30 years participated in this study. Their scores for interest and appropriateness (4.66±0.57), usefulness (4.60±0.61), and overall experience (4.63±0.60) were high. Their evaluation of the usability of artificial intelligence chatbot was also high at 4.58±0.70 points. However, their trust in chatbot responses (Q12) was lower (3.86±0.99). Common issues related to dissatisfaction included conversation disruptions due to token limits and inadequate chatbot responses. Conclusions: This is the first study investigating generative AI chatbots for suicide risk assessment training in KM education. Students reported high satisfaction, although their trust in chatbot accuracy was moderate. Technical limitations affected their experience. These preliminary findings suggest that generative AI chatbots hold promise for clinical training, particularly for education in psychiatry. However, improvements in response accuracy and conversation continuity are needed.