Big data, artificial intelligence (AI), and machine learning are keywords that represent the Fourth industrial Revolution. In addition, as the development of science and technology, the Korean government, public institutions and industries want professionals who can collect, analyze, utilize and predict data. This means that data analysis and utilization education become more important. Education on data analysis and utilization is increasing with trends in other academy. However, it is true that not many academy run long-term and systematic education. Korea Institute of Science and Technology Information (KISTI) is a data ecosystem hub and one of its performance missions has been providing data utilization and analysis education to meet the needs of industries, institutions and governments since 1966. In this study, KISTI's data education was analyzed using the number of curriculum trainees per year from 2001 to 2019. With this data, the change of interest in education in information and data field was analyzed by reflecting social and historical situations. And we identified the characteristics of KISTI and trainees. It means that the identity, characteristics, infrastructure, and resources of the institution have a greater impact on the trainees' interest of data-use education.In particular, KISTI, as a research institute, conducts research in various fields, including bio, weather, traffic, disaster and so on. And it has various research data in science and technology field. The purpose of this study can provide direction forthe establishment of new curriculum using data that can represent KISTI's strengths and identity. One of the conclusions of this paper would be KISTI's greatest advantages if it could be used in education to analyze and visualize many research data. Finally, through this study, it can expect that KISTI will be able to present a new direction for designing data curricula with quality education that can fulfill its role and responsibilities and highlight its strengths.
Journal of the Korea Fashion and Costume Design Association
/
v.23
no.1
/
pp.87-102
/
2021
The purpose of this study is to consider effective digital marketing strategies through analysis of luxury fashion brands. This study conducted both quantitative analysis and case studies of the brands Louis Vuitton, Gucci, Burberry, and Chanel. To measure the brand image of the luxury fashion brands, the survey was distributed to Millennials, and total of 277 responses were used for the final analysis by using SPSS 25.0 statistical program. Other than survey, this paper analyzed digital marketing strategies of luxury fashion brands through brand-related papers, website and social media of each brand, Samsung Designnet's database, and news posted on search engines. The results of this study are as follows: First, according to the result of examining brand image of luxury fashion brands, there was no significant difference between brands, except Gucci. Second, this study analyzed each luxury fashion brand to understand the characteristics of digital marketing, and common characteristics were identified. Third, by analyzing the brand image and digital marketing strategies of luxury fashion brands, it was confirmed that Gucci's brand image and digital marketing strategies were consistent, while there was a difference between Burberry's brand image and digital marketing strategy. Therefore, this article proposes the following digital marketing strategies that are suitable for luxury fashion brands. First, is the connection of on/offline channels. Second, is the use of AI technology. Third, is a blockchain-based platform.
Deep learning in computer vision has made accelerated improvement over a short period but large-scale learning data and computing power are still essential that required time-consuming trial and error tasks are involved to derive an optimal network model. In this study, we propose a similar image classification performance improvement method based on CR (Confusion Rate) that considers only the characteristics of the data itself regardless of network optimization or data reinforcement. The proposed method is a technique that improves the performance of the deep learning model by calculating the CRs for images in a dataset with similar characteristics and reflecting it in the weight of the Loss Function. Also, the CR-based recognition method is advantageous for image identification with high similarity because it enables image recognition in consideration of similarity between classes. As a result of applying the proposed method to the Resnet18 model, it showed a performance improvement of 0.22% in HanDB and 3.38% in Animal-10N. The proposed method is expected to be the basis for artificial intelligence research using noisy labeled data accompanying large-scale learning data.
International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.77-90
/
2023
Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.6
/
pp.659-665
/
2023
The exciter of a ship generator adjusts the magnetic flux through excitation current control to maintain the output terminal voltage constant. The voltage controller inside the exciter typically uses a proportional integral control method. however, the response characteristics determined by the gain and time constant produce unwanted output owing to an inappropriate setting value that can reduce the quality and stability of power within the ship. In this study, a neural network circuit is learned using stable input/output data that can be obtained through the AC4A type exciter model provided by IEEE, and the simulation is performed by replacing the existing proportional integral control type voltage controller with the learned neural network circuit controller. Consequently, overshooting was improved by up to 9.63% compared with that of the previous model, and excellence in stable response characteristics was confirmed.
This paper proposes a method for detecting malicious domains considering human habitual characteristics by building a Deep Learning model based on LSTM (Long Short-Term Memory). DGA (Domain Generation Algorithm) malicious domains exploit human habitual errors, resulting in severe security threats. The objective is to swiftly and accurately respond to changes in malicious domains and their evasion techniques through typosquatting to minimize security threats. The LSTM-based Deep Learning model automatically analyzes and categorizes generated domains as malicious or benign based on malware-specific features. As a result of evaluating the model's performance based on ROC curve and AUC accuracy, it demonstrated 99.21% superior detection accuracy. Not only can this model detect malicious domains in real-time, but it also holds potential applications across various cyber security domains. This paper proposes and explores a novel approach aimed at safeguarding users and fostering a secure cyber environment against cyber attacks.
Purpose: This research delves into the various factors that influence the performance of restaurant businesses on social commerce platforms in Bangkok, Thailand. The study considers both internal and external factors, including but not limited to business characteristics and location. Moreover, this research also analyzes the effects of employing multiple social commerce platforms on business efficiency and explores the underlying reasons for such effects. Research design, data, and methodology: Restaurants can be classified into different price ranges: low, medium, and high. To further investigate, we employed natural language processing AI to analyze online reviews and evaluate algorithm performance using machine learning techniques. We aimed to develop a model to gauge customer satisfaction with restaurants across different price categories effectively. Results: According to the research findings, several factors significantly impact restaurant groups in the low and mid-price ranges. Among these factors are population density and the number of seats at the restaurant. On the other hand, in the mid-and high-price ranges, the price levels of the food and drinks offered by the restaurant play a crucial role in determining customer satisfaction. Furthermore, the correlation between different social commerce platforms can significantly affect the business performance of high-price range restaurant groups. Finally, the level of online review sentiment has been found to influence customer decision-making across all restaurant types significantly. Conclusions: The study emphasizes that restaurants' characteristics based on their price level differ significantly, and social commerce platforms have the potential to affect one another. It is worth noting that the sentiment expressed in online reviews has a more significant impact on customer decision-making than any other factor, regardless of the type of restaurant in question.
This study aimed to understand the current status of science and engineering university(SEU) R&D operations depending on the research project characteristics(e.g., stages and characteristics), then provide implications for future university R&D support systems and related policies. Hence, an online survey targeting SEU R&D recipients was conducted between October 4th to November 5th, 2021. Analyzing 445 valid data using the Apriori algorithm, 16 association rules for R&D operation according to the research project characteristics show that regardless of research characteristics, SEU's R&D projects, particularly in applied research, were funded or operated under the leadership of government or public institutions. For basic research, individual researchers had a higher level of autonomy in determining research topics; yet, they had a short duration (3 years) and a unit of evaluation period of more than 3 years. These findings can be empirical evidence for revealing the relationship among various variables in operating SEUs' R&D.
The objective of the present study was to determine gender-related and month-related behavioral differences in captive alpine musk deer. The study was conducted at Xinglongshan Musk Deer Farm (XMDF) of Xinglongshan National Nature Reserve in Gansu Province of western China. The integrated method of focal sampling and all occurrence recording was utilized to quantify the behavioural patterns of 45 captive alpine musk deer (Moschus sifanicus) during non-mating season (from August $1^{st}$ to October $25^{th}$), and the behavioural durations of 12 behavioural patterns such as standing-gazing were recorded. The behavioural modes were compared to explore the potential differences between females and males, and the monthly behavioural modes for males and females were analyzed. Our results showed that the captive female deer in XMDF could compensate the energy lost in pregnancy, parturition and lactation through improving its ingestive efficiency. In order to be more sensitive to the changing environment, females expressed more standing-gazing (SG: $67.38{\pm}12.69\;s$) and moving (MO; $27.41{\pm}5.02\;s$), but less bedding (BE: $42.32{\pm}11.35\;s$) than male deer (SG: $56.43{\pm}9.19\;s$; MO: $19.23{\pm}4.64\;s$; BE: $96.14{\pm}15.71\;s$). Furthermore, females perform more affinitive interaction (AI: $7.89{\pm}4.81\;s$) but less ano-genital sniffing (AS: $0.24{\pm}0.13\;s$) and agonistic behaviour (CI: $0.57{\pm}0.26\;s$) than males (AI: $1.45{\pm}1.09\;s$; AS: $0.45{\pm}0.29\;s$; CI: $1.42{\pm}0.67\;s$). The females expressed ingestion more in October ($132.31{\pm}27.47\;s$) than in August ($28.80{\pm}18.44\;s$) and September ($45.1{\pm}10.84\;s$), and the males performed Ano-genital sniffing (AS: $1.79{\pm}1.14\;s$) and self-directed behaviour (SD: $12.61{\pm}5.03\;s$) significantly more in October than in August (AS: 0 s; SD: $0.62{\pm}0.17\;s$) and September (AS: $0.02{\pm}0.01\;s$; SD: $0.17{\pm}0.15\;s$). Moreover, male musk deer increased the intension of ano-genital sniffing, agonistic behaviour and tail rubbing behaviour, which were related to sexual activities.
Shi, Ru-Chun;Meng, Ai-Feng;Zhou, Weng-Lin;Yu, Xiao-Yan;Huang, Xin-En;Ji, Ai-Jun;Chen, Lei
Asian Pacific Journal of Cancer Prevention
/
v.16
no.16
/
pp.7117-7121
/
2015
Background: The effects of home nursing intervention on the quality of life in patients with nasopharyngeal carcinoma (NPC) after radiotherapy and chemotherapy are unclear. According to the characteristics of nursing home patients with nasopharyngeal carcinoma, we should continuously improve the nursing plan and improve the quality of life of patients at home. Materials and Methods: We selected 180 patients at home with NPC after radiotherapy and chemotherapy. The patients were randomly divided into experimental and control groups (90 patients each). The experimental group featured intervention with an NPC home nursing plan, while the control group was given routine discharge and outpatient review. Nursing intervention for patients was mainly achieved by regular telephone follow-up and home visits. We use the quality of life scale (QOL-C30), anxiety scale (SAS) and depression scale (SDS) to evaluate these patients before intervention, and during follow-up at 1 month and 3 months after the intervention. Results: Overall health and quality of life were significantly different between the groups (p<0.05), Emotional function score was significantly higher after intervention (p<0.05), as were cognitive function and social function scores after 3 months of intervention (p<0.05). Scores of fatigue, nausea and vomiting, pain, appetite and constipation were also significantly different between the two groups (p<0.05). Rates of anxiety and depression after 3 months of intervention were 11.1%, 22.2% and 34.4%, 53.3%, the differences being significant (p<0.05). Conclusions: NPC home nursing plan could effectively improve overall quality of life, cognitive function, social function (after 3 months) of patients, but improvement regarding body function is not suggested. Fatigue, nausea and vomiting, pain, appetite, constipation were clearly improved. We should further pursue a personalized, comprehensive measurements for nursing interventions and try to improve the quality of life of NPC patients at home.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.