• Title/Summary/Keyword: AI Value Education

Search Result 63, Processing Time 0.022 seconds

The Direction of AI Classes using AI Education Platform

  • Ryu, Mi-Young;Han, Seon-Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.69-76
    • /
    • 2022
  • In this paper, we presented the contents and methods of AI classes using AI platforms. First, we extracted the content elements of each stage of the AI class using the AI education platform from experts. Classes using the AI education platform were divided into 5 stages and 25 class elements were selected. We also conducted a survey of 82 teachers and analyzed the factors that they acted importantly at each stage of the AI platform class. As a result of the analysis, teachers regarded the following contents as important factors for each stage that are AI model preparation stage (the learning stage of the AI model), problem recognition stage (identification of problems and AI solution potential), data processing stage (understanding the types of data), AI modelingstage (AI value and ethics), and problem solvingstage (AI utilization in real life).

Analyzing the effects of artificial intelligence (AI) education program based on design thinking process (디자인씽킹 프로세스 기반의 인공지능(AI) 교육 프로그램 적용 효과분석)

  • Lee, Sunghye
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.49-59
    • /
    • 2020
  • At the beginning of the discussion of AI education in K-12 education, the study was conducted to develop and apply an AI education program based on Design Thinking and analyze the effects of the AI education programs. In the AI education program, students explored and defined the AI problems they were interested in, gathered the necessary data to build an AI model, and then developed a project using scratch. In order to analyze the effectiveness of the AI education program, the change of learner's perception of the value of AI and the change of AI efficacy were analyzed. The overall perception of the AI project was also analyzed. As a result, AI efficacy was significantly increased through the experience of carrying out the project according to the Design Thinking process. In addition, the efficacy of solving problems with AI was influenced by the level of use of programming languages. The learner's overall perception of the AI project was positive, and the perceptions of each stage of the AI project (AI problem understanding and problem exploration, practice, problem definition, problem solving idea implementation, evaluation and presentation) was also positive. This positive perception was higher among students with high level of programming language use. Based on these results, the implications for AI education were suggested.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

A Study on Artificial Intelligence Education Design for Business Major Students

  • PARK, So-Hyun;SUH, Eung-Kyo
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.8
    • /
    • pp.21-32
    • /
    • 2021
  • Purpose: With the advent of the era of the 4th industrial revolution, called a new technological revolution, the necessity of fostering future talents equipped with AI utilization capabilities is emerging. However, there is a lack of research on AI education design and competency-based education curriculum as education for business major. The purpose of this study is to design AI education to cultivate competency-oriented AI literacy for business major in universities. Research design, data and methodology: For the design of AI basic education in business major, three expert Delphi surveys were conducted, and a demand analysis and specialization strategy were established, and the reliability of the derived design contents was verified by reflecting the results. Results: As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived from this were data structure understanding and processing, visualization, web scraping, web crawling, public data utilization, and concept of machine learning and application. Conclusions: The educational design content derived through this study is expected to help establish the direction of competency-centered AI education in the future and increase the necessity and value of AI education by utilizing it based on the major field.

Understanding MyData-Based Platform Adoption for SW·AI Education & Training Programs

  • Hansung Kim;Sae Bom Lee;Yunjae Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.269-277
    • /
    • 2024
  • This study aims to explore the key factors for the systematic development and activation of a MyData-based platform for SW·AI education and training programs recently initiated by the government. To achieve this, a research model based on the Value-based Adoption Model (VAM) was established, and a survey was conducted with 178 participants who had experience in SW·AI education and training programs. The research model was validated using confirmatory factor analysis and Partial Least Squares Structural Equation Modeling (PLS-SEM). The main findings of the study are as follows: First, transparency and self-determination significantly influenced perceived benefits, while technical effort and security significantly influenced perceived risks. Second, perceived benefits positively affected the intention to use the platform, whereas perceived risks did not show a significant impact. Based on these results, this study suggests implications for the systematic development and activation of a MyData-based platform in the field of SW·AI education and training.

Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities (비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계)

  • Baek, Su-Jin;Shin, Yoon-Hee
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • With the advent of the 4th Industrial Revolution, AI utilization capabilities are being emphasized in various industries, but AI education design and curriculum research as universal education is currently lacking. This study offers a design for universal AI education to further cultivate its use in universities. For the AI basic education design, a questionnaire was conducted for experts three times, and the reliability of the derived design contents was verified by reflecting the results. As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived were data structure understanding and processing, visualization, word cloud, public data utilization, and machine learning concept understanding and utilization. The educational design content derived through this study is expected to increase the value of competency-centered AI universal education in the future.

A study on the development of IoT-based middle school SW·AI education contents -Connection with Curriculum- (IoT 기반 중학교 SW·AI 교육 콘텐츠 개발에 관한 연구 -교육과정과의 연계-)

  • Han, JungSoo;Lee, Kenho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.21-26
    • /
    • 2022
  • This study aims to enhance the cultivation of SW·AI basic competencies of middle school students by forming and distributing SW·AI education programs for middle school students who form the basis of their lives. In addition, by planning SW·AI education programs in connection with the regular curriculum, it is intended to serve as a cornerstone for the public education of SW·AI education that will be implemented from 2025. To this end, the concept of SW and AI in middle school was first defined and a plan to link software/artificial intelligence learning factors to the regular curriculum was proposed, and based on this, SW·AI education programs for middle school students were prepared. Based on literature research, the understanding of artificial intelligence technology, the value of data, and the use of artificial intelligence technology in real life were set as SW·AI education contents, and educational programs were organized by linking them with the current middle school curriculum. All SW·AI education was organized in the form of practice rather than theory so that classes could be conducted centered on participants, and the purpose of the course was to cultivate the ability to use artificial intelligence technology in real life based on understanding artificial intelligence technology.

Exploration of AI Curriculum Development for Graduate School of Education (교육대학원 AI교육과정 개발 탐색)

  • Bae, Youngkwon;Yoo, Inhwan;Jang, Junhyeok;Kim, Daeyu;Yu, Wonjin;Kim, Wooyeol
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.433-441
    • /
    • 2020
  • The advent of the intelligent information society and artificial intelligence education for fostering future talents is attracting the attention of the education community, and the AI graduate course for teachers is also being opened and operated. The curriculum of the AI education graduate school, which was established this year, is self-contained considering the conditions of each university. Are organized. Accordingly, this study seeks to explore the direction of curriculum development so that AI curriculum that can be more effective and enhance educational value in the graduate school of education can be developed in the future. Based on the Backward design, the AI curriculum proposed in this study includes Bloom's digital taxonomy, Bruner's spiral curriculum composition principle, and three elements such as 'content domain', 'level', and 'teacher learning method'. It was intended to consist of. Based on the direction of AI curriculum development suggested in the study, we hope that the AI curriculum of domestic graduate schools of education will be more substantial, and this framework will be revised and supplemented in the future to be used in the composition of the AI curriculum in elementary and secondary schools.

A Study on How to Operate the Curriculum·Comparative Division for Animation Majors in the Era of Image-generating AI: Focusing on the AI Technology Convergence Process (이미지생성AI시대 애니메이션학과의 교과·비교과 운영 안 연구: AI기술융합 과정을 중심으로)

  • Sung Won Park;You Jin Gong
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.4
    • /
    • pp.99-119
    • /
    • 2024
  • Focusing on the rapid progress of image generation AI, this study examines the changes in talent required according to changes in the production process of the content industry, and proposes an educational management plan for the subject and comparative department of the university's animation major. First, through environmental analysis, the trend of the animation content industry is analyzed in three stages, and the necessity of producing AI-adapted content talent is derived by re-establishing the talent image of the university's animation major and introducing it into rapid education. Next, we present a case designed by applying teaching methods to improve technology convergence capabilities and project-oriented capabilities by presenting subject and non-curricular cases operated in the animation department of the researcher's university. Through this, we propose the necessity of education to cultivate animation content talent who can play technical and administrative roles by utilizing various AI systems in the future. The goal of this study is to establish a cornerstone study by presenting application cases and having the status of a university as a talent supplier that can lead the content industry beyond the era of AI content production that breaks the boundaries of genres between contents. In conclusion, it is intended to propose the application of education to create value through technology convergence capabilities and project-oriented capabilities to cultivate AI-adapted content talents.

Teaching and Learning Design for AI Value Judgment (인공지능 가치판단에 대한 교수학습 설계)

  • Jeong, Minhee;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.233-237
    • /
    • 2021
  • With the advent of the 4th industrial revolution, interest in artificial intelligence education is increasing in elementary schools. In order to nurture future talents with artificial intelligence capabilities, AI education should be actively conducted at school sites. Although basic software education is provided in the 2015 revised curriculum, there is a tendency to view the programming process that creates artificial intelligence only as a problem-solving process. However, when creating an artificial intelligence, the value of the developer who creates artificial intelligence is projected. Therefore, it is necessary to deal with the contents of artificial intelligence value judgment during SW education. This study has limitations due to the fact that Delphi research was conducted with a group of experts. In the future, it is judged that quantitative research should be conducted to supplement these limitations.

  • PDF