• Title/Summary/Keyword: AI Understanding

Search Result 309, Processing Time 0.028 seconds

A Study on the Artificial Intelligence (AI) Training Data Quality: Fuzzy-set Qualitative Comparative Analysis (fsQCA) Approach (인공지능 학습용 데이터 품질에 대한 연구: 퍼지셋 질적비교분석)

  • Hyunmok Oh;Seoyoun Lee;Younghoon Chang
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.19-56
    • /
    • 2024
  • This study is empirical research to enhance understanding of AI (artificial intelligence) training data project in South Korea. It primarily focuses on the various concerns regarding data quality from policy-executing institutions, data construction companies, and organizations utilizing AI training data to develop the most reliable algorithm for society. For academic contribution, this study suggests a theoretical foundation and research model for understanding AI training data quality and its antecedents, as well as the unique data and ethical aspects of AI. For this purpose, this study proposes a research model with important antecedents related to AI training data quality, such as data attribute factors, data building environmental factors, and data type-related factors. The study collects 393 sample data from actual practitioners and personnel from companies building artificial intelligence training data and companies developing artificial intelligence services. Data analysis was conducted through Fuzzy Set Qualitative Comparative Analysis (fsQCA) and Artificial Neural Network analysis (ANN), presenting academic and practical implications related to the quality of AI training data.

Experience Way of Artificial Intelligence PLAY Educational Model for Elementary School Students

  • Lee, Kibbm;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.232-237
    • /
    • 2020
  • Given the recent pace of development and expansion of Artificial Intelligence (AI) technology, the influence and ripple effects of AI technology on the whole of our lives will be very large and spread rapidly. The National Artificial Intelligence R&D Strategy, published in 2019, emphasizes the importance of artificial intelligence education for K-12 students. It also mentions STEM education, AI convergence curriculum, and budget for supporting the development of teaching materials and tools. However, it is necessary to create a new type of curriculum at a time when artificial intelligence curriculum has never existed before. With many attempts and discussions going very fast in all countries on almost the same starting line. Also, there is no suitable professor for K-12 students, and it is difficult to make K-12 students understand the concept of AI. In particular, it is difficult to teach elementary school students through professional programming in AI education. It is also difficult to learn tools that can teach AI concepts. In this paper, we propose an educational model for elementary school students to improve their understanding of AI through play or experience. This an experiential education model that combineds exploratory learning and discovery learning using multi-intelligence and the PLAY teaching-learning model to undertand the importance of data training or data required for AI education. This educational model is designed to learn how a computer that knows only binary numbers through UA recognizes images. Through code.org, students were trained to learn AI robots and configured to understand data bias like play. In addition, by learning images directly on a computer through TeachableMachine, a tool capable of supervised learning, to understand the concept of dataset, learning process, and accuracy, and proposed the process of AI inference.

Artificial Intelligence: Cultural Imagination and Social System (인공지능: 그 문화적 상상력과 사회적 시스템)

  • Song, Young-Hyun;Lee, Hye-Kyoung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.195-203
    • /
    • 2019
  • The aim of this study is to explore the paradigm shifts in culture and system related to life in terms of AI and the present point of view in which creating human values together are important. An approach that focuses on how AI-related phenomena work in modern society forms the basis of this research. Therefore, to clarify the meaning of "AI phenomenon" converging it as a part of social culture, this study was intended to find out the value incorporated in the social system such as ethics and equality together with the literature review. Inferring the technical culture that are combined with the AI that the members of society can do together is as important as technical understanding in the functional aspect. Therefore, this study was intended to suggest new culture that the cultural imagination and the social system create harmonizing each other, that is, the possibility of "AI culture". So, this article has a characteristic of a preliminary study, too.

The Artificial Intelligence Literacy Scale for Middle School Students

  • Kim, Seong-Won;Lee, Youngjun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.225-238
    • /
    • 2022
  • Although the importance of literacy in Artificial Intelligence (AI) education is increasing, there is a lack of testing tools for measuring such competency. To address this gap, this study developed a testing tool that measures AI literacy among middle school students. This goal was achieved through the establishment of an expert group that was enlisted to determine the relevant factors and items covered by the proposed tool. To verify the reliability and validity of the developed tool, a field review, exploratory factor analysis, and confirmatory factor analysis were conducted. These procedures resulted in a testing tool comprising six domains that encompass 30 items. The domains are the social impact of AI (eight items), the understanding of AI (six items), AI execution plans (five items), problem solving with AI (five items), data literacy (four items), and AI ethics (two questions). The items are to be rated using a five-point Likert scale. The internal consistency of the tool was .970 (total), while that of the domains ranged from .861 to .939. This study can serve as reference for developing the analysis of AI literacy, teaching and learning, and evaluation in AI education.

A study on conceptual recognition of Korean Medicine doctor for usefulness of Artificial Intelligence to Korean Medicine department and medical application (한의사의 진료분야와 의료 적용분야의 AI 도입과 유용도에 대한 인식조사 연구)

  • Kyung-Yul Mok
    • Journal of the Health Care and Life Science
    • /
    • v.10 no.2
    • /
    • pp.413-421
    • /
    • 2022
  • The online questionnaire platform was conducted with Korean medicine doctors to analyses the recognition of applicability of artificial intelligence(AI) to the field of application and department of Korean medicine. Most of all respondents did not have a chance to participate academic experience or research experience related to AI, but had a high willingness to participate in further learning and research. The level of AI understanding was supervised learning When AI is introduced to Korean medicine, the mean predicted usefulness scores to each application field for research and development of oriental medicine(74.60 points) and social policy establishment(73.68 points) are significantly higher than other of Korean medicine field of application, while those of Sasang constitutional department(66.61 points) and Korean medicine rehabilitation(65.91 points) were evaluated higher than other fields of treatment of Korean medicine. Respondents judged that the introduction of AI could be realistically useful in relatively formal fields of Korean medicine, while it would be difficult in non-formal fields.

Ethical and Legal Implications of AI-based Human Resources Management (인공지능(AI) 기반 인사관리의 윤리적·법적 영향)

  • Jungwoo Lee;Jungsoo Lee;Ji Hun kwon;Minyi Cha;Kyu Tae Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.100-112
    • /
    • 2024
  • This study investigates the ethical and legal implications of utilizing artificial intelligence (AI) in human resource management, with a particular focus on AI interviews in the recruitment process. AI, defined as the capability of computer programs to perform tasks associated with human intelligence such as reasoning, learning, and adapting, is increasingly being integrated into HR practices. The deployment of AI in recruitment, specifically through AI-driven interviews, promises efficiency and objectivity but also raises significant ethical and legal concerns. These concerns include potential biases in AI algorithms, transparency in AI decision-making processes, data privacy issues, and compliance with existing labor laws and regulations. By analyzing case studies and reviewing relevant literature, this paper aims to provide a comprehensive understanding of these challenges and propose recommendations for ensuring ethical and legal compliance in AI-based HR practices. The findings suggest that while AI can enhance recruitment efficiency, it is imperative to establish robust ethical guidelines and legal frameworks to mitigate risks and ensure fair and transparent hiring practices.

Artificial Intelligence for Neurosurgery : Current State and Future Directions

  • Sung Hyun Noh;Pyung Goo Cho;Keung Nyun Kim;Sang Hyun Kim;Dong Ah Shin
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.2
    • /
    • pp.113-120
    • /
    • 2023
  • Artificial intelligence (AI) is a field of computer science that equips machines with human-like intelligence and enables them to learn, reason, and solve problems when presented with data in various formats. Neurosurgery is often at the forefront of innovative and disruptive technologies, which have similarly altered the course of acute and chronic diseases. In diagnostic imaging, such as X-rays, computed tomography, and magnetic resonance imaging, AI is used to analyze images. The use of robots in the field of neurosurgery is also increasing. In neurointensive care units, AI is used to analyze data and provide care to critically ill patients. Moreover, AI can be used to predict a patient's prognosis. Several AI applications have already been introduced in the field of neurosurgery, and many more are expected in the near future. Ultimately, it is our responsibility to keep pace with this evolution to provide meaningful outcomes and personalize each patient's care. Rather than blindly relying on AI in the future, neurosurgeons should gain a thorough understanding of it and use it to enhance their patient care.

'Knowing' with AI in construction - An empirical insight

  • Ramalingham, Shobha;Mossman, Alan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.686-693
    • /
    • 2022
  • Construction is a collaborative endeavor. The complexity in delivering construction projects successfully is impacted by the effective collaboration needs of a multitude of stakeholders throughout the project life-cycle. Technologies such as Building Information Modelling and relational project delivery approaches such as Alliancing and Integrated Project Delivery have developed to address this conundrum. However, with the onset of the pandemic, the digital economy has surged world-wide and advances in technology such as in the areas of machine learning (ML) and Artificial Intelligence (AI) have grown deep roots across specializations and domains to the point of matching its capabilities to the human mind. Several recent studies have both explored the role of AI in the construction process and highlighted its benefits. In contrast, literature in the organization studies field has highlighted the fear that tasks currently done by humans will be done by AI in future. Motivated by these insights and with the understanding that construction is a labour intensive sector where knowledge is both fragmented and predominantly tacit in nature, this paper explores the integration of AI in construction processes across project phases from planning, scheduling, execution and maintenance operations using literary evidence and experiential insights. The findings show that AI can complement human skills rather than provide a substitute for them. This preliminary study is expected to be a stepping stone for further research and implementation in practice.

  • PDF

A study on Discount in Prior Experience of AI and Acceptance: Focusing on AI Effect (인공지능 사전경험 무시 현상과 수용에 관한 연구: AI Effect를 중심으로)

  • Lee, JeongSeon
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.241-249
    • /
    • 2022
  • Artificial intelligence is applied not only to the daily life of individuals but also to all industries, and it is no wonder that the age of artificial intelligence has arrived. Therefore it is important to understand the factors that influence the acceptance of AI. This study analyzes whether "AI Effect" which recognizes that commercialized or familiar artificial intelligence is no longer artificial intelligence, affects the acceptance of artificial intelligence and proposes an acceptance plan based on the results. Two experiments were conducted. The first experiment was conducted on 105 adults in the result it was found that 32.4% (34 people) had AI Effect, AI Effect existed in 43.6% (24 people) of women and 20% (10 people) of men, that is, the proportion of AI Effect exsitence in women is about twice as high.and AI Effect exists when the level of AI knowledge is low. The second experiment was conducted 240 adults and 85 participants with AI Effect were selected. We found the group that recognized experience of AI accepted AI more actively. Understanding of AI Effect is expected to suggest companies' views in order to enhance AI capabilities and acceptance. In addition, future studies are expected on considering individual differences or related to acceptance attitudes.

An Analysis of Students' Experiences Using the Block Coding Platform KNIME in a Science-AI Convergence Class at a Science Core High School (과학중점학교 학생의 블록코딩 플랫폼 KNIME을 활용한 과학-AI 융합 수업 경험 분석)

  • Uijeong Hong;Eunhye Shin;Jinseop Jang;Seungchul Chae
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.2
    • /
    • pp.141-153
    • /
    • 2024
  • The 2022 revised science curriculum aims to develop the ability to solve scientific problems arising in daily life and society based on convergent thinking stimulated through participation in research activities using artificial intelligence (AI). Therefore, we developed a science-AI convergence education program that combines the science curriculum with artificial intelligence and employed it in convergence classes for high school students. The aim of the science-AI convergence class was for students to qualitatively understand the movement of a damped pendulum and build an AI model to predict the position of the pendulum using the block coding platform KNIME. Individual in-depth interviews were conducted to understand and interpret the learners' experiences. Based on Giorgi's phenomenological research methodology, we described the learners' learning processes and changes, challenges and limitations of the class. The students collected data and built the AI model. They expected to be able to predict the surrounding phenomena based on their experimental results and perceived the convergence class positively. On the other hand, they still perceived an with the unfamiliarity of platform, difficulty in understanding the principle of AI, and limitations of the teaching method that they had to follow, as well as limitations of the course content. Based on this, we discussed the strengths and limitations of the science-AI convergence class and made suggestions for science-AI convergence education. This study is expected to provide implications for developing science-AI convergence curricula and implementing them in the field.