• Title/Summary/Keyword: AI Understanding

Search Result 309, Processing Time 0.025 seconds

Study on the Perception of Workers and Supervisors about AI Assistants (AI 비서에 대한 직무 종사자와 관리자의 인식 유형 연구)

  • Lee, Seon Mi;Yun, Haejung
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.187-203
    • /
    • 2018
  • The purpose of this study was to investigate the perception about AI assistants and the differences between two groups, workers(secretaries) and supervisors(bosses), using the Q-methodology which has an advantage in understanding the types of subjective perceptions. Through literature reviews and interviews, 34 Q-samples were extracted, and then Q-sorting was conducted by P-samples(20 workers and 15 supervisors). As a result of Q-sorting, the types and characteristics of AI assistants perceived by each P-sample were explained. The perception of the workers divided into five distinct types, and the perception of the supervisors was divided into three distinct types. The most crucial factors in distinguishing between workers and supervisors' perceptions depend on whether they are capable of performing certain tasks and whether they can replace existing secretarial jobs. This study, as the primary research on AI assistants, can help to redefine the work that can be replaced by AI and the work that only people can do, and thus to establish education, recruitment, and training plans.

User Factors and Trust in ChatGPT: Investigating the Relationship between Demographic Variables, Experience with AI Systems, and Trust in ChatGPT (사용자 특성과 ChatGPT 신뢰의 관계 : 인구통계학적 변수와 AI 경험의 영향)

  • Park Yeeun;Jang Jeonghoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.53-71
    • /
    • 2023
  • This study explores the relationship between various user factors and the level of trust in ChatGPT, a sophisticated language model exhibiting human-like capabilities. Specifically, we considered demographic characteristics such as age, education, gender, and major, along with factors related to previous AI experience, including duration, frequency, proficiency, perception, and familiarity. Through a survey of 140 participants, comprising 71 females and 69 males, we collected and analyzed the data to see how these user factors have a relationship with trust in ChatGPT. Both descriptive and inferential statistical methods, encompassing multiple linear regression models, were employed in our analysis. Our findings reveal significant relationships between user factors such as gender, the perception of prior AI interactions, self-evaluated proficiency, and Trust in ChatGPT. This research not only enhances our understanding of trust in artificial intelligence but also offers valuable insights for AI developers and practitioners in the field.

Artificial Intelligence and Air Pollution : A Bibliometric Analysis from 2012 to 2022

  • Yong Sauk Hau
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • The application of artificial intelligence (AI) is becoming increasingly important to coping with air pollution. AI is effective in coping with it in various ways including air pollution forecasting, monitoring, and control, which is attracting a lot of attention. This attention has created high need for analyzing studies on AI and air pollution. To contribute for satisfying it, this study performed bibliometric analyses on the studies on AI and air pollution from 2012 to 2022 using the Web of Science database. This study analyzed them in various aspects such as the trend in the number of articles, the trend in the number of citations, the top 10 countries of origin, the top 10 research organizations, the top 10 research funding agencies, the top 10 journals, the top 10 articles in terms of total citations, and the distribution by languages. This study not only reports the bibliometric analysis results but also reveals the eight distinct features in the research steam in studies on AI and air pollution, identified from the bibliometric analysis results. They are expected to make a useful contribution for understanding the research stream in AI and air pollution.

Transforming mathematics education with AI: Innovations, implementations, and insights

  • Sheunghyun Yeo;Jewoong Moon;Dong-Joong Kim
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.387-392
    • /
    • 2024
  • The use of artificial intelligence (AI) in mathematics education has advanced as a means for promoting understanding of mathematical concepts, academic achievement, computational thinking, and problem-solving. From a total of 13 studies in this special issue, this editorial reveals threads of potential and future directions to advance mathematics education with the integration of AI. We generated five themes as follows: (1) using ChatGPT for learning mathematical content, (2) automated grading systems, (3) statistical literacy and computational thinking, (4) integration of AI and digital technology into mathematics lessons and resources, and (5) teachers' perceptions of AI education. These themes elaborate on the benefits and opportunities of integrating AI in teaching and learning mathematics. In addition, the themes suggest practical implementations of AI for developing students' computational thinking and teachers' expertise.

Consumers' Tolerance When Confronted with Different Service Types in Service Retailing

  • Chengcheng YU;Na CAI;Jinzhe YAN;Yening ZHOU
    • Journal of Distribution Science
    • /
    • v.22 no.2
    • /
    • pp.103-113
    • /
    • 2024
  • Purpose: With the popularity of artificial intelligence (AI) in the service industry and occurrence ofservice failures in AI-based services, understanding human-robot interaction issues in service failure situations is especially important. Some issues which deserve further empirical investigation are whether consumers can develop the same tolerance for chatbots after service failure as they have for human agents, and the relationship between agent type and tolerance is mediated by the mechanisms of perceived warmth and perceived competence. Research Design, Data, and Methodology: This research experimentally collected and analyzed data from 119 university students who had experienced chatbots service failures. Differences in tolerance towards human agents and chatbots after experiencing service failures were explored, with a further examination of the mediating pathways between this relationship via perceived warmth and perceived competence. Results: Consumers are more tolerant ofservice failure with chatbots compared to service failure with human agents. Significant mediation of the relationship between service agent and service failure tolerance by perceived competence, while perceived warmth has no significant mediating effect. Conclusions: This research enhances our understanding of AI-assisted services, human-computer interaction, improves the service functionality of existing smart devices, and deepens the understanding of the relationship between consumer responses and behaviors.

The Direction of AI Classes using AI Education Platform

  • Ryu, Mi-Young;Han, Seon-Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.69-76
    • /
    • 2022
  • In this paper, we presented the contents and methods of AI classes using AI platforms. First, we extracted the content elements of each stage of the AI class using the AI education platform from experts. Classes using the AI education platform were divided into 5 stages and 25 class elements were selected. We also conducted a survey of 82 teachers and analyzed the factors that they acted importantly at each stage of the AI platform class. As a result of the analysis, teachers regarded the following contents as important factors for each stage that are AI model preparation stage (the learning stage of the AI model), problem recognition stage (identification of problems and AI solution potential), data processing stage (understanding the types of data), AI modelingstage (AI value and ethics), and problem solvingstage (AI utilization in real life).

Strengthening Teacher Competencies in Response to the Expanding Role of AI (AI의 역할 확대에 따른 교사 역량 강화 방안)

  • Soo-Bum Shin
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.513-520
    • /
    • 2024
  • This study investigates the changes in teachers' roles as the impact of AI on school education expands. Traditionally, teachers have been responsible for core aspects of classroom instruction, curriculum development, assessment, and feedback. AI can automate these processes, particularly enhancing efficiency through personalized learning. AI also supports complex classroom management tasks such as student tracking, behavior detection, and group activity analysis using integrated camera and microphone systems. However, AI struggles to automate aspects of counseling and interpersonal communication, which are crucial in student life guidance. While direct conversational replacement by AI is challenging, AI can assist teachers by providing data-driven insights and pre-conversation resources. Key competencies required for teachers in the AI era include expertise in advanced instructional methods, dataset analysis, personalized learning facilitation, student and parent counseling, and AI digital literacy. Teachers should collaborate with AI to emphasize creativity, adjust personalized learning paths based on AI-generated datasets, and focus on areas less amenable to AI automation, such as individualized learning and counseling. Essential skills include AI digital literacy and proficiency in understanding and managing student data.

AI and Public Services: Focusing on Analytics on Citizens' Perceptions of AI Speaker and Non-Contact Smart City Services in the Era of Post-Corona (AI와 공공서비스: 포스트 코로나 시대 AI 스피커 및 비대면 스마트시티 서비스 시민 인식 분석을 중심으로)

  • Kim, Byoung Joon
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.43-54
    • /
    • 2021
  • Currently, citizens' expectations and concerns on utilizing artificial intelligence (AI) technologies in the public sector are widening with the rapid digital transformation. Furthermore the level of global acceptance on the AI and other intelligent digital technologies is augmenting with the needs of non-face-to-face types of public services more than ever due to the unforeseen and unpredictable pandemic, COVID-19. Thus, this study intended to empirically examine what policy directions for the public should be considered to provide well-designed services as well as to promote the evidence-based public policies in terms of Al speaker technology as a non-contact smart city service. Based on the survey of senior citizens' perceptions on AI (AI Speaker technology), this study conducted structure equation modeling analyses to identify whether technology acceptance models on to the varied dependent variables such as actual use, perception, attitude, and brand royalty. The Results of the empirical analyses showed that AI increased the positive level of citizens' perception, attitude and brand royalty on non-contact public services (smart city services) which are becoming more crucial for developing AI oriented government and providing intelligent public services effectively. In addition, theoretical and practical implications are discussed for understanding the changes of public service in the post-corona.

Unveiling the synergistic nexus: AI-driven coding integration in mathematics education for enhanced computational thinking and problem-solving

  • Ipek Saralar-Aras;Yasemin Cicek Schoenberg
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.233-254
    • /
    • 2024
  • This paper delves into the symbiotic integration of coding and mathematics education, aimed at cultivating computational thinking and enriching mathematical problem-solving proficiencies. We have identified a corpus of scholarly articles (n=38) disseminated within the preceding two decades, subsequently culling a portion thereof, ultimately engendering a contemplative analysis of the extant remnants. In a swiftly evolving society driven by the Fourth Industrial Revolution and the ascendancy of Artificial Intelligence (AI), understanding the synergy between these domains has become paramount. Mathematics education stands at the crossroads of this transformation, witnessing a profound influence of AI. This paper explores the evolving landscape of mathematical cognition propelled by AI, accentuating how AI empowers advanced analytical and problem-solving capabilities, particularly in the realm of big data-driven scenarios. Given this shifting paradigm, it becomes imperative to investigate and assess AI's impact on mathematics education, a pivotal endeavor in forging an education system aligned with the future. The symbiosis of AI and human cognition doesn't merely amplify AI-centric thinking but also fosters personalized cognitive processes by facilitating interaction with AI and encouraging critical contemplation of AI's algorithmic underpinnings. This necessitates a broader conception of educational tools, encompassing AI as a catalyst for mathematical cognition, transcending conventional linguistic and symbolic instruments.

Development of SW Education Program for Data-Driven Problem Solving Using Micro:bit (마이크로비트를 활용한 데이터 기반 문제해결 SW교육 프로그램 개발)

  • Kim, JBongChul;Yu, HeaJin;Oh, SeungTak;Kim, JongHoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.713-721
    • /
    • 2021
  • As the Ministry of Education has introduced AI education in earnest in the 2022 revised curriculum, there is growing sympathy for the need for data-related education along with AI education. In order to develop the competence to understand and utilize artificial intelligence properly, the understanding and utilization competence of data must be based on it. In this study, a data-driven problem solving SW education program using microbit was developed by synthesizing the results of demand analysis and previous research analysis. The data-driven problem solving education program was developed with educational elements that can be applied to elementary school students among the contents of data science. Through the program developed in this study, education that combines various topics and subjects can be linked based on real-life data. Furthermore, based on an understanding of data, it will lay the foundation for a more substantial AI education program.