• Title/Summary/Keyword: AI Education Platform

Search Result 78, Processing Time 0.024 seconds

Design of Python Block and Text Co-coding Platform for Artificial Intelligence Convergence in Vocational Education (인공지능 융합 직업 교육을 위한 파이썬 블록과 텍스트 공동 코딩 플랫폼 설계)

  • Lee, Se-Hoon;Kim, Yeon-Woo;Hong, Seung-Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.231-232
    • /
    • 2022
  • 본 논문에서는 직업 교육 분야에 인공지능 융합 교육을 위한 파이썬 블록과 텍스트 동시 코딩 플랫폼을 설계하였다. 플랫폼에 코딩 언어로는 데이터 분석과 머신러닝의 다양한 라이브러리를 지원하고 있는 파이썬으로 하며, 직업 교육의 영역 전문가가 쉽게 직무 기능 파이썬 블록 모듈을 만들어 추가하고 커스터마이징을 할 수 있는 아키텍처를 갖고 있다. 제안한 플랫폼을 활용한 인공지능 융합 직업 분야로 바이오와 기계공학 분야의 블록 모듈을 추가하고 실습 예제를 만드는 과정을 보여 플랫폼의 유용성과 효율성을 보였다.

  • PDF

Analysis of Meta Fashion Meaning Structure using Big Data: Focusing on the keywords 'Metaverse' + 'Fashion design' (빅데이터를 활용한 메타패션 의미구조 분석에 관한 연구: '메타버스' + '패션디자인' 키워드를 중심으로)

  • Ji-Yeon Kim;Shin-Young Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.549-559
    • /
    • 2023
  • Along with the transition to the fourth industrial revolution, the possibility of metaverse-based innovation in the fashion field has been confirmed, and various applications are being sought. Therefore, this study performs meaning structure analysis and discusses the prospects of meta fashion using big data. From 2020 to 2022, data including the keyword "metaverse + fashion design" were collected from portal sites (Naver, Daum, and Google), and the results of keyword frequency, N-gram, and TF-IDF analyses were derived using text mining. Furthermore, network visualization and CONCOR analysis were performed using Ucinet 6 to understand the interconnected structure between keywords and their essential meanings. The results were as follows: The main keywords appeared in the following order: fashion, metaverse, design, 3D, platform, apparel, and virtual. In the N-gram analysis, the density between fashion and metaverse words was high, and in the TF-IDF analysis results, the importance of content- and technology-related words such as 3D, apparel, platform, NFT, education, AI, avatar, MCM, and meta-fashion was confirmed. Through network visualization and CONCOR analysis using Ucinet 6, three cluster results were derived from the top emerging words: "metaverse fashion design and industry," "metaverse fashion design and education," and "metaverse fashion design platform." CONCOR analysis was also used to derive differentiated analysis results for middle and lower words. The results of this study provide useful information to strengthen competitiveness in the field of metaverse fashion design.

Hotel employee's perceptions of artificial intelligence concierge robots effect on switching cost, resistance, turnover intention (호텔 종업원의 인공지능 컨시어지로봇에 대한 인식이 전환비용, 저항 및 이직의도에 미치는 영향)

  • Wang, Danping;Chung, Namho
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.206-223
    • /
    • 2023
  • The introduction of Smart technologies such as Artificial Intelligence(AI) systems are have a powerful impact in a variety of industry fields. Some experts predict that smart technology will completely change people's daily life and work styles, causing technological innovation, productivity improvement, and discovery and emergence of new fields. On the one hand, this vision cannot ignore negative views and concerns. Despite many social debates about employment, such as job loss and rising unemployment, there have not been many studies based on employee experience that provide a fundamental solution to the conflict between AI and employment. Therefore, this study finds out the effects and related factors of AI concierge robots for hotel employees, focusing on the hotel industry, and how employees' perceptions of AI concierge robots affect user resistance and turnover intention. This study, conducted a questionnaire survey of 322 hotel employees who had experience working with AI concierge robots in China, and used SPSS and SmartPLS statistical analysis programs to draw conclusions. We found that hotel employees' perceptions of AI concierge robots were significantly related to user resistance and turnover intention, and this association was related to employee self-efficacy, perceived organizational support, quality of AI services and new tasks. In addition, it was found that the quality of AI concierge robots directly or indirectly had the greatest influence on user resistance and turnover intention. The findings of this study provide theoretical implications for academia and practical implications for industry practitioners.

Design and implementation of an AI-based speed quiz content for social robots interacting with users (사람과 상호작용하는 소셜 로봇을 위한 인공지능 기반 스피드 퀴즈 콘텐츠의 설계와 구현)

  • Oh, Hyun-Jung;Kang, A-Reum;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.611-618
    • /
    • 2020
  • In this paper, we propose a design and implementation method of speed quiz content that can be driven by a social robot capable of interacting with humans, and a method of developing an intelligent module necessary for implementation. In addition, we propose a method of implementing speed quiz content through the process of constructing a map by arranging and connecting intelligent module blocks. Recently, software education has become mandatory and interest in programming is increasing. However, programming is difficult for students without basic knowledge of programming languages to directly access, and interest in block-type programming platforms suitable for beginners is growing. The block-type programming platform used in this paper is a platform that supports immediate and intuitive programming by supporting interactions between humans and robots. In this paper, the intelligent module implemented for the speed quiz content was used by blocking it within a block-type programming platform. In order to implement the scenario of the speed quiz content proposed in this paper, we implement a total of three image-based artificial intelligence modules. In addition to the intelligent module, various functional blocks were placed to implement the speed quiz content. In this paper, we propose a method of designing a speed quiz content scenario and a method of implementing an intelligent module for speed quiz content.

The Development of Software Teaching-Learning Model based on Machine Learning Platform (머신러닝 플랫폼을 활용한 소프트웨어 교수-학습 모형 개발)

  • Park, Daeryoon;Ahn, Joongmin;Jang, Junhyeok;Yu, Wonjin;Kim, Wooyeol;Bae, Youngkwon;Yoo, Inhwan
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The society we are living in has being changed to the age of the intelligent information society after passing through the knowledge-based information society in the early 21st century. In this study, we have developed the instructional model for software education based on the machine learning which is a field of artificial intelligence(AI) to enhance the core competencies of learners required in the intelligent information society. This model is focusing on enhancing the core competencies through the process of problem-solving as well as reducing the burden of learning about AI itself. The specific stages of the developed model are consisted of seven levels which are 'Problem Recognition and Analysis', 'Data Collection', 'Data Processing and Feature Extraction', 'ML Model Training and Evaluation', 'ML Programming', 'Application and Problem Solving', and 'Share and Feedback'. As a result of applying the developed model in this study, we were able to observe the positive response about learning from the students and parents. We hope that this research could suggest the future direction of not only the instructional design but also operation of software education program based on machine learning.

The Effects of Artificial Intelligence Convergence Education using Machine Learning Platform on STEAM Literacy and Learning Flow

  • Min, Seol-Ah;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.199-208
    • /
    • 2021
  • In this paper, the effect of artificial intelligence convergence education program that provides STEAM education using machine learning platform on elementary school students' STEAM literacy and learning flow was analyzed. A homogeneous group of 44 elementary school 6th graders was divided into an experimental group and a control group. The control group received 10 lessons of general subject convergence class, and the experimental group received 10 lessons of STEAM-based artificial intelligence convergence education using Machine learning for Kids. To develop the artificial intelligence convergence education program, the goals, achievement standards, and content elements of the 2015 revised curriculum to select subjects and class contents is analyzed. As a result of the STEAM literacy test and the learning flow test, there was a significant difference between the experimental group and the control group. In particular, it can be confirmed that the coding environment in which the artificial intelligence function is expanded has a positive effect on learners' learning flow and STEAM literacy. Among the sub-elements of convergence talent literacy, significant differences were found in the areas of personal competence such as convergence and creativity. Among the sub-elements of learning flow, significant differences were found in the areas such as harmony of challenge and ability, clear goals, focus on tasks, and self-purposed experiences. If further expanded research is conducted in the future, it will be a basic research for more effective education for the future.

D.I.Y : Block-based Programming Platform for Machine Learning Education (D.I.Y : 머신러닝 교육을 위한 블록 기반 프로그래밍 플랫폼)

  • Lee, Se-hoon;Jeong, Ji-hyun;Lee, Jin-hyeong;Jo, Cheon-woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.245-246
    • /
    • 2020
  • 본 논문에서는 블록형 코딩 방식을 통해 비전공자가 스스로 머신러닝의 쉽게 원리를 구현해 볼 수 있는 딥아이( D.I.Y, Deep AI Yourself) 플랫폼을 제안하였다. 딥아이는 구글의 오픈 소스 블록형 코딩 툴 개발 라이브러리인 Blockly를 기반으로 머신러닝 알고리즘을 쉽게 구현할 수 다양한 블록으로 구성되어 있다. Blockly는 CSR 기반이며 사용자가 개발한 블록 코드는 내부적으로 코드 생성기에 의해 파이썬 코드 등으로 변환되어 백엔드 서버에서 처리를 하며 결과를 사용자에게 제공한다.

  • PDF

A Study on the Teaching and Learning Method of Digital Literacy (디지털 리터러시 함양을 위한 교수·학습 방법 연구)

  • Lee, Cheol-Seung;Baek, Hye-Jin
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.351-356
    • /
    • 2022
  • The era of the 4th industrial revolution is being built on the digital revolution. In order to understand and properly utilize these technological advances, digital literacy education is emphasized. This study investigated the components of digital literacy and proposed a curriculum & teaching and learning method improvement plan, and instructor digital literacy cultivation method. In order to improve the curriculum, it is necessary to improve the curriculum by expanding the ability to solve digital problems. As a plan to improve teaching and learning methods, it is necessary to present a linkage and convergence educational model based on communication, collaboration, and sharing between instructors and learners through the establishment of an interactive platform. In order to improve the digital literacy of instructors, it is very important to improve the educational environment that can easily design a learner-centered educational model. This study is meaningful in that it presented basic data for creating an educational environment based on communication and collaboration through digital literacy in an environment connected with digital technology.

A Machine Learning Model Learning and Utilization Education Curriculum for Non-majors (비전공자 대상 머신러닝 모델 학습 및 활용교육 커리큘럼)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • In this paper, a basic machine learning model learning and utilization education curriculum for non-majors is proposed, and an education method using Orange machine learning model learning and analysis tools is proposed. Orange is an open-source machine learning and data visualization tool that can create machine learning models by learning data using visual widgets without complex programming. Orange is a platform that is widely used by non-major undergraduates to expert groups. In this paper, a basic machine learning model learning and utilization education curriculum and weekly practice contents for one semester are proposed. In addition, in order to demonstrate the reality of practice contents for machine learning model learning and utilization, we used the Orange tool to learn machine learning models from categorical data samples and numerical data samples, and utilized the models. Thus, use cases for predicting the outcome of the population were proposed. Finally, the educational satisfaction of this curriculum is surveyed and analyzed for non-majors.

The Perception Analysis of Autonomous Vehicles using Network Graph (네트워크 그래프를 활용한 자율주행차에 대한 인식 분석)

  • Hyo-gyeong Park;Yeon-hwi You;Sung-jung Yong;Seo-young Lee;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Recently, with the development of artificial intelligence technology, many technologies for user convenience are being developed. Among them, interest in autonomous vehicles is increasing day by day. Currently, many automobile companies are aiming to commercialize autonomous vehicles. In order to lay the foundation for the government's new and reasonable policy establishment to support commercialization, we tried to analyze changes and perceptions of public opinion through news article data. Therefore, in this paper, 35,891 news article data mentioning terms similar to 'autonomous vehicles' over the past three years were collected and network analyzed. As a result of the analysis, major keywords such as 'autonomous driving', 'AI', 'future', 'Hyundai Motor', 'autonomous driving vehicle', 'automobile', 'industrial', and 'electric vehicle' were derived. In addition, the autonomous vehicle industry is developing into a faster and more diverse platform and service industry by converging with various industries such as semiconductor companies and big tech companies as well as automobile companies and is paying attention to the convergence of industries. To continuously confirm changes and perceptions in public opinion, it is necessary to analyze perceptions through continuous analysis of SNS data or technology trends.