본 연구는 청각장애인과 비장애인 모두를 위한 수어 교육의 접근성과 효율성을 개선하는 것을 목적으로 한다. 이를 위해 Hand Tracking 기술과 대화형 AI를 통합한 VR 실감형 수어 교육 콘텐츠를 개발하였다. 사용자는 이 콘텐츠를 통해 실시간으로 수어를 학습하며, 가상 환경에서의 직접적인 의사소통을 경험할 수 있다. 연구 결과, 이러한 통합 접근 방식이 수어 학습에 있어 몰입감을 크게 향상시키며, 학습자에게 더 깊은 이해를 제공함으로써 수어 학습의 장벽을 낮추는 데 기여한다는 것을 확인하였다. 이는 수어 교육의 새로운 패러다임을 제시하며, 기술이 교육의 접근성과 효과를 어떻게 변화시킬 수 있는지를 보여준다.
Kim, Sang Hee;Choi, Jihye;Park, Chan Sub;Kim, Hyun-Ah;Noh, Woo Chul;Seong, Min-Ki
Journal of Breast Disease
/
제6권2호
/
pp.46-51
/
2018
Purpose: Endocrine therapy is the preferred treatment for hormone receptor (HR)-positive metastatic breast cancer (MBC). We investigated the efficacy of combined aromatase inhibitor (AI) and luteinizing hormone-releasing hormone (LHRH) agonist in premenopausal patients with HR-positive MBC. Methods: We retrospectively analyzed the medical records of 21 HR-positive premenopausal MBC patients treated with combined AI and LHRH agonist therapy. Results: The median follow-up period was 32.9 months. The overall response rate was 47.6%, with three complete responses (14.3%) and seven partial responses (33.3%). Nine patients (42.9%) achieved stable disease lasting more than 6 months; thus, the clinical benefit rate was 90.4%. The median time to progression was 45.4 months. No patients experienced grade 3 or 4 toxicity. Conclusion: Combined AI and LHRH agonist treatment safely and effectively induced remission or prolonged disease stabilization, suggesting that this could be a promising treatment option for HR-positive premenopausal patients with MBC.
Kim, Min-Jung;Liu, Yi;Oh, Song Hee;Ahn, Hyo-Won;Kim, Seong-Hun;Nelson, Gerald
대한치과교정학회지
/
제51권2호
/
pp.77-85
/
2021
Objective: To evaluate the accuracy of a multi-stage convolutional neural network (CNN) model-based automated identification system for posteroanterior (PA) cephalometric landmarks. Methods: The multi-stage CNN model was implemented with a personal computer. A total of 430 PA-cephalograms synthesized from cone-beam computed tomography scans (CBCT-PA) were selected as samples. Twenty-three landmarks used for Tweemac analysis were manually identified on all CBCT-PA images by a single examiner. Intra-examiner reproducibility was confirmed by repeating the identification on 85 randomly selected images, which were subsequently set as test data, with a two-week interval before training. For initial learning stage of the multi-stage CNN model, the data from 345 of 430 CBCT-PA images were used, after which the multi-stage CNN model was tested with previous 85 images. The first manual identification on these 85 images was set as a truth ground. The mean radial error (MRE) and successful detection rate (SDR) were calculated to evaluate the errors in manual identification and artificial intelligence (AI) prediction. Results: The AI showed an average MRE of 2.23 ± 2.02 mm with an SDR of 60.88% for errors of 2 mm or lower. However, in a comparison of the repetitive task, the AI predicted landmarks at the same position, while the MRE for the repeated manual identification was 1.31 ± 0.94 mm. Conclusions: Automated identification for CBCT-synthesized PA cephalometric landmarks did not sufficiently achieve the clinically favorable error range of less than 2 mm. However, AI landmark identification on PA cephalograms showed better consistency than manual identification.
본 연구는 한국에서 상용화된 인공지능(AI) 기반 의료 영상 장치의 발전과 현재 동향을 분석하는 것을 목표로 한다. 2023년 9월 30일 기준으로 한국 식품의약품안전처에 허가, 인증 및 신고된 AI 기반 의료기기는 총 186개로, 이 중 138개가 영상의학과와 관련된 제품이었다. 본 연구는 2018년부터 2023년까지의 연도별 허가 추세, 장비 유형, 적용 부위, 주요 기능 등을 종합적으로 고찰하였다. 연구 결과, AI 의료기기는 2018년 4개 제품에서 시작하여 2023년까지 꾸준한 성장세를 보였으며, 특히 2020년 이후 급격한 증가세를 나타내었다. 이는 AI 기술의 발전과 의료분야의 수요 증가가 상호 작용한 결과로 볼 수 있다. 장비별로는 CT, X-ray, MR 순으로 AI 의료기기가 개발되었으며, 이는 각 장비별 이미지의 특성과 임상적 중요성을 반영한다. 본 연구에서는 흉부, 뇌신경, 근골격계 등 특정 부위에 대한 AI 의료기기 개발이 활발한 것을 확인하였고, 주요 기능별로는 의료영상 분석, 탐지 및 진단 보조, 영상 전송 등이 주를 이루었다. 이러한 결과는 AI의 패턴 인식 및 데이터 분석 능력이 의료영상 분야에서 중요한 역할을 하고 있음을 시사한다. 또한, 본 연구는 한국 제품이 국제적인 인증, 특히 미국 FDA와 유럽 CE 인증을 받은 사례를 조사하였다. 그 결과, 다수의 제품이 두 기관의 인증을 받았으며, 이는 한국의 AI 의료기기가 국제적 수준에 부합하며, 글로벌 시장에서의 경쟁력을 갖추고 있음을 보여준다. 본 연구는 AI 기술이 의료영상 분야에서 미치는 영향과 그 발전 가능성을 분석함으로써, 향후 연구 및 개발 방향에 중요한 시사점을 제공한다. 하지만, 규제 측면, 데이터의 질과 접근성, 임상적 유효성 등의 도전 과제도 지적되어, 이러한 문제들에 대한 지속적인 연구와 개선이 요구된다.
목적 : 본 연구는 국내 감각통합치료의 임상 관찰 평가 사용실태와 세부 항목별 결과 측정의 어려움 및 중요도를 알아보고 이를 통해 임상 관찰 측정에 있어 AI 측정 기술의 적용 유용성과 세부 항목별 적용 필요도를 확인하고자 하였다. 연구 방법 : 연구 과정은 국내 작업치료사 31명에서 온라인 설문지 배포를 통해 조사 연구를 실시하였다. 설문지는 일반적 정보, 감각통합 평가 도구 사용 실태, 임상 관찰의 세부 항목별 측정의 어려움, AI 측정 기술의 유용성, 세부 항목별 평가의 중요성 및 AI 측정 기술 개발의 필요성을 조사하는 내용으로 구성되었다. 조사의 결과를 빈도분석과 기술통계를 사용하여 분석하였다. 결과 : 조사에 참여한 작업치료사들은 Sensory Profile(96.8%)을 가장 많이 사용하였고 그다음으로 임상 관찰(90.3%)을 많이 사용하였다. 임상 관찰 시 측정이 어려운 세부 항목은 Finger-to-nose Test와 Postural Control(on the 이었으며, 다음으로 Eye Movement와 Protective Extension Test(67.7%)였다. 임상 관찰 시 AI 측정 기술 적용은 83.9%의 연구 대상자들이 모두 유용할 것으로 응답하였다. AI 측정 기술 적용이 필요하다고 응답한 가장 높은 항목은 Postural Control(on the ball)(90.3%)이었고, 다음으로 Eye Movement(83.9%), Prone Extension과 Protective Extension Test(77.4%) 순으로 나타났다. 결론 : 본 연구의 결과는 국내 아동 작업치료 현장에서 임상 관찰이 중요한 평가도구이며 임상 관찰 평가의 측정 정확성을 향상하기 위해서 AI 기술 적용이 필요하다는 작업치료사들의 인식을 확인할 수 있었다.
본 연구는 소비자의 감성과 경험이 중요한 서비스 분야에서 생성형 인공지능을 활용하는 방법에 대한 조사를 목표로 활용시의 환각 현상을 최소화하고, 소비자의 감성 및 경험에 대한 전략적 서비스를 개발하는 것에 초점을 맞추고 있다. 이를 위해 기계적인 방식의 접근과 사용자가 프롬프트를 직접 생성하는 방식을 검토하였고, 사업아이템 정의 제공, 페르소나 특성 값 제공, 예시와 맥락형 동사명령, 출력 포멧과 톤 컨셉 지정 등의 프롬프트 생성 요인을 중심으로 실험적으로 적용하였다. 연구는 생성형 AI가 제공하는 맞춤형 콘텐츠의 정확성과 사용자 만족도를 향상시키는 데 기여할 수 있는 방안을 탐색한다. 또한, 이러한 접근 방식은 생성형 인공지능을 실제 서비스에 적용 시 발생할 수 있는 환각 현상 중심의 문제들을 해결하는 데 중요한 역할을 하며, 생성형 인공지능을 통한 소비자 서비스 혁신에 기여할 것으로 기대한다. 연구 결과는 소비자의 감성과 경험을 풍부하게 해석하는데 생성형 인공지능이 중요한 역할을 할 수 있음을 보여주며, 이는 다양한 산업 분야에서의 활용 가능성을 넓히고, 기술 발전을 넘어 소비자 감성 및 경험 전략의 새로운 방향을 제시할 것으로 기대한다. 하지만, 아직은 연구가 생소한 생성형 AI 기술 기반의 연구를 진행함으로써 미흡한 부분이 많다. 향후 연구에서는 더 다양한 산업 환경 적용으로 연구요인들의 범용성과 조건별 효과를 더 깊이 탐구할 필요가 있다. 또한, AI 기술의 급속한 발전에 따라 새로운 형태의 환각 증상과 이에 대응하는 새로운 전략 개발에 관한 연구가 지속해서 이루어져야 할 것이다.
Journal of information and communication convergence engineering
/
제16권3호
/
pp.148-152
/
2018
Adversarial attacks on artificial intelligence (AI) systems use adversarial examples to achieve the attack objective. Adversarial examples consist of slightly changed test data, causing AI systems to make false decisions on these examples. When used as a tool for attacking AI systems, this can lead to disastrous results. In this paper, we propose an ensemble of degraded convolutional neural network (CNN) modules, which is more robust to adversarial attacks than conventional CNNs. Each module is trained on degraded images. During testing, images are degraded using various degradation methods, and a final decision is made utilizing a one-hot encoding vector that is obtained by summing up all the output vectors of the modules. Experimental results show that the proposed ensemble network is more resilient to adversarial attacks than conventional networks, while the accuracies for normal images are similar.
본 논문은 인공지능(AI)을 활용하여 장애인 직업 훈련 평가 데이터를 분석하고, 다양한 머신러닝 알고리즘을 통해 최적의 예측 모델을 선정하는 연구를 수행한다. 훈련생의 성별, 나이, 학력, 장애 유형, 기초 학습 능력 등의 데이터를 분석하여 취업 가능성이 높은 직종을 예측하고, 이를 바탕으로 맞춤형 훈련 프로그램을 설계하여 훈련 효율성과 취업 성공률을 높이는 것을 목표로 한다.
Introduction: Acknowledging the global issue of diseases potentially caused by overwork, this study aims to develop an AI model to help workers understand the connection between cerebrocardiovascular diseases and their work environment. Materials and methods: The model was trained using medical and legal expertise along with data from the 2021 occupational disease adjudication certificate by the Industrial Accident Compensation Insurance and Prevention Service. The Polyglot-ko-5.8B model, which is effective for processing Korean, was utilized. Model performance was evaluated through accuracy, precision, sensitivity, and F1-score metrics. Results: The model trained on a comprehensive dataset, including expert knowledge and actual case data, outperformed the others with respective accuracy, precision, sensitivity, and F1-scores of 0.91, 0.89, 0.84, and 0.87. However, it still had limitations in responding to certain scenarios. Discussion: The comprehensive model proved most effective in diagnosing work-related cerebrocardiovascular diseases, highlighting the significance of integrating actual case data in AI model development. Despite its efficacy, the model showed limitations in handling diverse cases and offering health management solutions. Conclusion: The study succeeded in creating an AI model to discern the link between work factors and cerebrocardiovascular diseases, showcasing the highest efficacy with the comprehensively trained model. Future enhancements towards a template-based approach and the development of a user-friendly chatbot webUI for workers are recommended to address the model's current limitations.
This is one case report of surgically treated ventricular septal defect [VSD] with aortic insufficiency [AI] at department of thoracic and cardiovascular surgery, Hanyang university hospital. He had had progressive dyspnea on exertion and palpitation for 3 years prior to admission to our hospital. On examination, the blood pressure was 120/0 mmHg and the pulse rate 88 times/min. Bobbing motion of the head, Water hammer pulse, Corringan`s pulse, Quincke`s pulse and to and fro murmur were present. The heart murmur was consistent with .VSD and AI. Cardiomegaly was seen in chest X-ray. EKG, echocardiogram, aortogram and right heart catheterization was performed. On Sep. 9, 1980, open heart surgery was performed under the impression of VSD with AI. Infracrystal type VSD measuring 2 x 1.5 cm in diameter was closed with Teflon patch graft through the transverse ventriculotomy. AI was due to prolapsed, elongated right coronary and noncoronary cusp, especially noncoronary cusp. The prolapsed, elongated aortic leaflets were plicated by placing three 8-figure sutures between the free edge and the base of the leaflet [Frater`s method] through a transverse aortotomy. Postoperatively, he made an uneventful recovery, his blood pressure was 120/70 mmHg and showed no signs AI or residual shunt at discharge.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.