This study evaluates the AI digital competencies of teachers and presents a step-by-step framework for teacher's AI digital competencies that can be utilized in training. To do this, AI digital competencies were analyzed from the perspective of utilization and disposition, linked with the Technological Pedagogical Content Knowledge (TPACK) perspective. Then, as a precedent for step-by-step teacher AI digital competencies, the 3-step competency of the British Education and Training Foundation and the UNESCO ICT Teacher Competency Framework were presented. In this study, teacher's AI digital competencies were divided into three stages: entry, adaptation, and leadership, considering precedent research and domestic conditions. The initial entry stage passed the validity test in the second round of the Delphi survey, and the other two stages passed in the first round. The final entry stage is described as a stage where teachers understand AI digital but have difficulty implementing it, the adaptation stage is a level applied to standard curricula, and the leadership stage is a level where AI digital is applied in advanced courses and teachers serve as models for others. Through the overall AI digital competencies presented in this study, detailed competency development is possible, and it can be used as a reference material for developing evaluation items.
This study investigates the changes in teachers' roles as the impact of AI on school education expands. Traditionally, teachers have been responsible for core aspects of classroom instruction, curriculum development, assessment, and feedback. AI can automate these processes, particularly enhancing efficiency through personalized learning. AI also supports complex classroom management tasks such as student tracking, behavior detection, and group activity analysis using integrated camera and microphone systems. However, AI struggles to automate aspects of counseling and interpersonal communication, which are crucial in student life guidance. While direct conversational replacement by AI is challenging, AI can assist teachers by providing data-driven insights and pre-conversation resources. Key competencies required for teachers in the AI era include expertise in advanced instructional methods, dataset analysis, personalized learning facilitation, student and parent counseling, and AI digital literacy. Teachers should collaborate with AI to emphasize creativity, adjust personalized learning paths based on AI-generated datasets, and focus on areas less amenable to AI automation, such as individualized learning and counseling. Essential skills include AI digital literacy and proficiency in understanding and managing student data.
The development of artificial intelligence technology changes the social structure and educational environment, and the importance of artificial intelligence capabilities continues to increase. This study was conducted with the purpose of developing a checklist of questions to measure AI capabilities of elementary school students. To achieve the purpose of the study, a Delphi survey was used to analyze literature and develop questions. For literature analysis, two domestic studies, five international studies, and the Ministry of Education's curriculum report were collected through a search. The collected data was analyzed to construct core competency measurement elements. The core competency measurement elements consisted of understanding artificial intelligence (6 elements), artificial intelligence thinking (4 elements), artificial intelligence ethics (4 elements), and artificial intelligence social-emotion (3 elements). Considering the knowledge, skills, and attitudes of the constructed measurement elements, 19 questions were developed. The developed questions were verified through the first Delphi survey, and 7 questions were revised according to the revision opinions. The validity of 19 questions was verified through the second Delphi survey. The checklist items developed in this study are measured by teacher evaluation based on performance and behavioral observations rather than a self-report questionnaire. This has the implication that the measurement results of competency are raised to a reliable level.
With the advent of the 4th Industrial Revolution, AI utilization capabilities are being emphasized in various industries, but AI education design and curriculum research as universal education is currently lacking. This study offers a design for universal AI education to further cultivate its use in universities. For the AI basic education design, a questionnaire was conducted for experts three times, and the reliability of the derived design contents was verified by reflecting the results. As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived were data structure understanding and processing, visualization, word cloud, public data utilization, and machine learning concept understanding and utilization. The educational design content derived through this study is expected to increase the value of competency-centered AI universal education in the future.
This study assesses the national AI competitiveness of 38 OECD countries with focus on AI human capital, AI infrastructure, and AI innovation capacity. Utilizing the fuzzy-set ideal type analysis method, these countries were categorized into eight distinct types based on their national AI competitiveness levels, leading to the derivation of pertinent implications. The analysis identified a category termed "AI Leading Country" consisting of North American, Western European, and Nordic countries, along with several Asian nations including South Korea. Remarkably, the United States demonstrated dominant global national AI competitiveness, achieving the highest fuzzy scores across all three evaluative factors. South Korea was classified as an "AI Leading Country" primarily due to its superior AI infrastructure, but its performance in AI human capital and AI innovation capacity was found to be moderate relative to other analyzed nations; thus highlighting the necessity of sustained focus on the accumulation of AI human capital and bolstering of AI innovation capacity.
In this study, we approached from the perspective of AI convergence education in elementary, middle and high schools to understand AI convergence education. We examined what capabilities AI convergence education ultimately seeks to pursue, and analyzed various examples of AI convergence education in three dimensions: core curriculum, convergence model, AI learning elements and learning activities. In addition, factors to be considered in order for AI convergence education to be actively carried out include the cultivation of AI convergence education capabilities of teachers, the development and dissemination of AI teaching and learning methods and teaching and learning models, and evaluation methods for AI convergence education.
This study was conducted with the purpose of developing a checklist of questions to measure middle school students' AI capabilities. To achieve the goal of the study, literature analysis and question development Delphi survey were used. For literature analysis, two domestic studies, five international studies, and the Ministry of Education's curriculum report were collected through a search. The collected data was analyzed to construct core competency measurement elements. The core competency measurement elements are understanding of artificial intelligence (5 elements), artificial intelligence thinking (5 elements), utilization of artificial intelligence (4 elements), artificial intelligence ethics (6 elements), and artificial intelligence social-emotion (6 elements). elements). Considering the knowledge, skills, and attitudes of the constructed measurement elements, 31 questions were developed. The developed questions were verified through the first Delphi survey, and 10 questions were revised according to the revision opinions. The validity of 31 questions was verified through the second Delphi survey. The checklist items developed in this study are measured by teacher evaluation based on performance and behavioral observations rather than a self-report questionnaire. This has the implication that the level of reliability of measurement results increases.
Journal of The Korean Association of Information Education
/
v.25
no.2
/
pp.423-436
/
2021
In the future, artificial intelligence (AI) technology is expected to become a general-purpose technology (GPT), and it is predicted that AI competency will become an essential competency. Several nations around the world are fostering experts in the field of AI to achieve technological proficiency while working to develop the necessary infrastructure and educational environment. In this study, we investigated the status of software education at the liberal arts level at 31 universities in Seoul, along with precedents from domestic and foreign AI education research. Based on this, we concluded that an AI literacy education model is needed to link software education at the liberal arts level with professional AI education. And we classified 20 AI-related lectures released in the KOCW according to the AI literacy competencies required; based on the results of this classification, we propose a model for AI literacy education in the liberal arts for undergraduate students. The proposed AI literacy education model may be considered as AI·SW convergence to experience AI along with literacy in the humanities, deviating from the existing theoretical and computer-science-based approach. We expect that our proposed AI literacy education model can contribute to the proliferation of AI.
The necessity for introducing artificial intelligence(AI) into the public sector to form an intelligent government has been emerging. This study set 'Organizational Agility', 'Exploitation & Exploration Learning', and 'E-government Capability' as independent variables for the introduction of AI in central government. Dependent variables were set on whether AI was adopted in the central government organization 'Bu(mainly conducts policy planning)', and 'Cheong(mainly performs policy execution)'. Logistic regression analysis was performed on each of the two models. As a result, it was derived that ministry Bu adopted AI as organizational agility increased, and ministry Chung adopted AI as e-government capability increased. Particularly, it was identified that the effect of exploitation learning for Cheong organizations offset the influence of AI introduction according to e-government capabilities, while exploratory organizational learning facilitated the AI introduction. This study is meaningful for suggesting a strategy for adopting AI in government.
According to the Fourth Industrial Revolution, demand for and interest in jobs in the field of AI and data science - such as artificial intelligence/data analysts - are increasing. In order to keep pace with this trend, and to supply human resources that can effectively perform such jobs in the relevant fields in a timely manner, job seekers must develop the competencies required by the companies, and universities must be in charge of training. However, it is difficult to devise appropriate response strategies at the level of job seekers, companies and universities, which are stakeholders in terms of supplying suitably competent personnel. Therefore, the purpose of this study is to determine which competencies are required in practice in order to cultivate and supply human talents equipped with the necessary job competencies, and to propose plans for the development of the required competencies at the university level. In order to identify the required competencies in the field of AI and data science, data on job postings on the LinkedIn site, the recruitment platform, were analyzed using text mining techniques. Then, research was conducted with the aim of devising and proposing concrete plans for competency development at the university level by comparing and verifying the results of the international graduate school curriculum in the field of AI and data science, and the interview results with the hiring managers, respectively, with the results of the topic model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.