• Title/Summary/Keyword: AI 분류 모델

Search Result 224, Processing Time 0.022 seconds

Autoencoder based image classification technique for detecting encrypted VPN protocols (암호화된 VPN 프로토콜 탐지를 위한 오토인코더 기반 이미지 분류 기법)

  • 홍석현;박예진;엄서정;김정훈;김태욱;조영필
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.125-127
    • /
    • 2024
  • 최근 COVID-19 팬데믹으로 전 세계적으로 원격 근무로의 전환 속도가 가속화되면서 VPN 을 사용하는 기업이 증가하면서 VPN 을 통한 국내 개인정보 및 기술 유출이 빈번하게 일어나고 있다. 기존 전통적인 네트워크 프로토콜 분석 방법은 다양한 우회 방법과 패킷의 암호화로 인해서 VPN 프로토콜 탐지가 불가능하다. 하지만 AI 기반 모델을 사용하면 암호화된 패턴을 학습을 하여 분류가 가능하다. 따라서 본 논문에서는 오토인코더 기반 이미지 분류 기법으로 전통적인 방법으로 탐지하기 불가능하다고 생각했던 암호화된 VPN 패킷 중의 VPN 프로토콜을 직접 수집 및 탐지했고 성능이 0.99 가 나왔다.

Enhanced ACGAN based on Progressive Step Training and Weight Transfer

  • Jinmo Byeon;Inshil Doh;Dana Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.11-20
    • /
    • 2024
  • Among the generative models in Artificial Intelligence (AI), especially Generative Adversarial Network (GAN) has been successful in various applications such as image processing, density estimation, and style transfer. While the GAN models including Conditional GAN (CGAN), CycleGAN, BigGAN, have been extended and improved, researchers face challenges in real-world applications in specific domains such as disaster simulation, healthcare, and urban planning due to data scarcity and unstable learning causing Image distortion. This paper proposes a new progressive learning methodology called Progressive Step Training (PST) based on the Auxiliary Classifier GAN (ACGAN) that discriminates class labels, leveraging the progressive learning approach of the Progressive Growing of GAN (PGGAN). The PST model achieves 70.82% faster stabilization, 51.3% lower standard deviation, stable convergence of loss values in the later high resolution stages, and a 94.6% faster loss reduction compared to conventional methods.

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.

Automated Data Extraction from Unstructured Geotechnical Report based on AI and Text-mining Techniques (AI 및 텍스트 마이닝 기법을 활용한 지반조사보고서 데이터 추출 자동화)

  • Park, Jimin;Seo, Wanhyuk;Seo, Dong-Hee;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.69-79
    • /
    • 2024
  • Field geotechnical data are obtained from various field and laboratory tests and are documented in geotechnical investigation reports. For efficient design and construction, digitizing these geotechnical parameters is essential. However, current practices involve manual data entry, which is time-consuming, labor-intensive, and prone to errors. Thus, this study proposes an automatic data extraction method from geotechnical investigation reports using image-based deep learning models and text-mining techniques. A deep-learning-based page classification model and a text-searching algorithm were employed to classify geotechnical investigation report pages with 100% accuracy. Computer vision algorithms were utilized to identify valid data regions within report pages, and text analysis was used to match and extract the corresponding geotechnical data. The proposed model was validated using a dataset of 205 geotechnical investigation reports, achieving an average data extraction accuracy of 93.0%. Finally, a user-interface-based program was developed to enhance the practical application of the extraction model. It allowed users to upload PDF files of geotechnical investigation reports, automatically analyze these reports, and extract and edit data. This approach is expected to improve the efficiency and accuracy of digitizing geotechnical investigation reports and building geotechnical databases.

Automatic Classification and Vocabulary Analysis of Political Bias in News Articles by Using Subword Tokenization (부분 단어 토큰화 기법을 이용한 뉴스 기사 정치적 편향성 자동 분류 및 어휘 분석)

  • Cho, Dan Bi;Lee, Hyun Young;Jung, Won Sup;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In the political field of news articles, there are polarized and biased characteristics such as conservative and liberal, which is called political bias. We constructed keyword-based dataset to classify bias of news articles. Most embedding researches represent a sentence with sequence of morphemes. In our work, we expect that the number of unknown tokens will be reduced if the sentences are constituted by subwords that are segmented by the language model. We propose a document embedding model with subword tokenization and apply this model to SVM and feedforward neural network structure to classify the political bias. As a result of comparing the performance of the document embedding model with morphological analysis, the document embedding model with subwords showed the highest accuracy at 78.22%. It was confirmed that the number of unknown tokens was reduced by subword tokenization. Using the best performance embedding model in our bias classification task, we extract the keywords based on politicians. The bias of keywords was verified by the average similarity with the vector of politicians from each political tendency.

The Performance Improvement of U-Net Model for Landcover Semantic Segmentation through Data Augmentation (데이터 확장을 통한 토지피복분류 U-Net 모델의 성능 개선)

  • Baek, Won-Kyung;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1663-1676
    • /
    • 2022
  • Recently, a number of deep-learning based land cover segmentation studies have been introduced. Some studies denoted that the performance of land cover segmentation deteriorated due to insufficient training data. In this study, we verified the improvement of land cover segmentation performance through data augmentation. U-Net was implemented for the segmentation model. And 2020 satellite-derived landcover dataset was utilized for the study data. The pixel accuracies were 0.905 and 0.923 for U-Net trained by original and augmented data respectively. And the mean F1 scores of those models were 0.720 and 0.775 respectively, indicating the better performance of data augmentation. In addition, F1 scores for building, road, paddy field, upland field, forest, and unclassified area class were 0.770, 0.568, 0.433, 0.455, 0.964, and 0.830 for the U-Net trained by original data. It is verified that data augmentation is effective in that the F1 scores of every class were improved to 0.838, 0.660, 0.791, 0.530, 0.969, and 0.860 respectively. Although, we applied data augmentation without considering class balances, we find that data augmentation can mitigate biased segmentation performance caused by data imbalance problems from the comparisons between the performances of two models. It is expected that this study would help to prove the importance and effectiveness of data augmentation in various image processing fields.

A Transformer-Based Emotion Classification Model Using Transfer Learning and SHAP Analysis (전이 학습 및 SHAP 분석을 활용한 트랜스포머 기반 감정 분류 모델)

  • Subeen Leem;Byeongcheon Lee;Insu Jeon;Jihoon Moon
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.706-708
    • /
    • 2023
  • In this study, we embark on a journey to uncover the essence of emotions by exploring the depths of transfer learning on three pre-trained transformer models. Our quest to classify five emotions culminates in discovering the KLUE (Korean Language Understanding Evaluation)-BERT (Bidirectional Encoder Representations from Transformers) model, which is the most exceptional among its peers. Our analysis of F1 scores attests to its superior learning and generalization abilities on the experimental data. To delve deeper into the mystery behind its success, we employ the powerful SHAP (Shapley Additive Explanations) method to unravel the intricacies of the KLUE-BERT model. The findings of our investigation are presented with a mesmerizing text plot visualization, which serves as a window into the model's soul. This approach enables us to grasp the impact of individual tokens on emotion classification and provides irrefutable, visually appealing evidence to support the predictions of the KLUE-BERT model.

An Effectiveness Verification for Evaluating the Amount of WTCI Tongue Coating Using Deep Learning (딥러닝을 이용한 WTCI 설태량 평가를 위한 유효성 검증)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2019
  • A WTCI is an important criteria for evaluating an mount of patient's tongue coating in tongue diagnosis. However, Previous WTCI tongue coating evaluation methods is a most of quantitatively measuring ration of the extracted tongue coating region and tongue body region, which has a non-objective measurement problem occurring by exposure conditions of tongue image or the recognition performance of tongue coating. Therefore, a WTCI based on deep learning is proposed for classifying an amount of tonger coating in this paper. This is applying the AI deep learning method using big data. to WTCI for evaluating an amount of tonger coating. In order to verify the effectiveness performance of the deep learning in tongue coating evaluating method, we classify the 3 types class(no coating, some coating, intense coating) of an amount of tongue coating by using CNN model. As a results by testing a building the tongue coating sample images for learning and verification of CNN model, proposed method is showed 96.7% with respect to the accuracy of classifying an amount of tongue coating.

Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification (넙치 질병 증상 분류를 위한 객체 탐지 딥러닝 모델 성능 평가)

  • Kyung won Cho;Ran Baik;Jong Ho Jeong;Chan Jin Kim;Han Suk Choi;Seok Won Jung;Hvun Seung Son
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.71-84
    • /
    • 2023
  • Paralichthys olivaceus accounts for a large proportion, accounting for more than half of Korea's aquaculture industry. However, about 25-30% of the total breeding volume throughout the year occurs due to diseases, which has a very bad impact on the economic feasibility of fish farms. For the economic growth of Paralichthys olivaceus farms, it is necessary to quickly and accurately diagnose disease symptoms by automating the diagnosis of Paralichthys olivaceus diseases. In this study, we create training data using innovative data collection methods, refining data algorithms, and techniques for partitioning dataset, and compare the Paralichthys olivaceus disease symptom detection performance of four object detection deep learning models(such as YOLOv8, Swin, Vitdet, MvitV2). The experimental findings indicate that the YOLOv8 model demonstrates superiority in terms of average detection rate (mAP) and Estimated Time of Arrival (ETA). If the performance of the AI model proposed in this study is verified, Paralichthys olivaceus farms can diagnose disease symptoms in real time, and it is expected that the productivity of the farm will be greatly improved by rapid preventive measures according to the diagnosis results.

An Accurate Log Object Recognition Technique

  • Jiho, Ju;Byungchul, Tak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In this paper, we propose factors that make log analysis difficult and design technique for detecting various objects embedded in the logs which helps in the subsequent analysis. In today's IT systems, logs have become a critical source data for many advanced AI analysis techniques. Although logs contain wealth of useful information, it is difficult to directly apply techniques since logs are semi-structured by nature. The factors that interfere with log analysis are various objects such as file path, identifiers, JSON documents, etc. We have designed a BERT-based object pattern recognition algorithm for these objects and performed object identification. Object pattern recognition algorithms are based on object definition, GROK pattern, and regular expression. We find that simple pattern matchings based on known patterns and regular expressions are ineffective. The results show significantly better accuracy than using only the patterns and regular expressions. In addition, in the case of the BERT model, the accuracy of classifying objects reached as high as 99%.