• Title/Summary/Keyword: AI 머신 비전

Search Result 11, Processing Time 0.027 seconds

A Machine Learning Model Learning and Utilization Education Curriculum for Non-majors (비전공자 대상 머신러닝 모델 학습 및 활용교육 커리큘럼)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • In this paper, a basic machine learning model learning and utilization education curriculum for non-majors is proposed, and an education method using Orange machine learning model learning and analysis tools is proposed. Orange is an open-source machine learning and data visualization tool that can create machine learning models by learning data using visual widgets without complex programming. Orange is a platform that is widely used by non-major undergraduates to expert groups. In this paper, a basic machine learning model learning and utilization education curriculum and weekly practice contents for one semester are proposed. In addition, in order to demonstrate the reality of practice contents for machine learning model learning and utilization, we used the Orange tool to learn machine learning models from categorical data samples and numerical data samples, and utilized the models. Thus, use cases for predicting the outcome of the population were proposed. Finally, the educational satisfaction of this curriculum is surveyed and analyzed for non-majors.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities (비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계)

  • Baek, Su-Jin;Shin, Yoon-Hee
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • With the advent of the 4th Industrial Revolution, AI utilization capabilities are being emphasized in various industries, but AI education design and curriculum research as universal education is currently lacking. This study offers a design for universal AI education to further cultivate its use in universities. For the AI basic education design, a questionnaire was conducted for experts three times, and the reliability of the derived design contents was verified by reflecting the results. As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived were data structure understanding and processing, visualization, word cloud, public data utilization, and machine learning concept understanding and utilization. The educational design content derived through this study is expected to increase the value of competency-centered AI universal education in the future.

Evaluation of Video Codec AI-based Multiple tasks (인공지능 기반 멀티태스크를 위한 비디오 코덱의 성능평가 방법)

  • Kim, Shin;Lee, Yegi;Yoon, Kyoungro;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.273-282
    • /
    • 2022
  • MPEG-VCM(Video Coding for Machine) aims to standardize video codec for machines. VCM provides data sets and anchors, which provide reference data for comparison, for several machine vision tasks including object detection, object segmentation, and object tracking. The evaluation template can be used to compare compression and machine vision task performance between anchor data and various proposed video codecs. However, performance comparison is carried out separately for each machine vision task, and information related to performance evaluation of multiple machine vision tasks on a single bitstream is not provided currently. In this paper, we propose a performance evaluation method of a video codec for AI-based multi-tasks. Based on bits per pixel (BPP), which is the measure of a single bitstream size, and mean average precision(mAP), which is the accuracy measure of each task, we define three criteria for multi-task performance evaluation such as arithmetic average, weighted average, and harmonic average, and to calculate the multi-tasks performance results based on the mAP values. In addition, as the dynamic range of mAP may very different from task to task, performance results for multi-tasks are calculated and evaluated based on the normalized mAP in order to prevent a problem that would be happened because of the dynamic range.

D.I.Y : Block-based Programming Platform for Machine Learning Education (D.I.Y : 머신러닝 교육을 위한 블록 기반 프로그래밍 플랫폼)

  • Lee, Se-hoon;Jeong, Ji-hyun;Lee, Jin-hyeong;Jo, Cheon-woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.245-246
    • /
    • 2020
  • 본 논문에서는 블록형 코딩 방식을 통해 비전공자가 스스로 머신러닝의 쉽게 원리를 구현해 볼 수 있는 딥아이( D.I.Y, Deep AI Yourself) 플랫폼을 제안하였다. 딥아이는 구글의 오픈 소스 블록형 코딩 툴 개발 라이브러리인 Blockly를 기반으로 머신러닝 알고리즘을 쉽게 구현할 수 다양한 블록으로 구성되어 있다. Blockly는 CSR 기반이며 사용자가 개발한 블록 코드는 내부적으로 코드 생성기에 의해 파이썬 코드 등으로 변환되어 백엔드 서버에서 처리를 하며 결과를 사용자에게 제공한다.

  • PDF

Development of the Liberal Arts Course for Informatics, Mathematics, and Science Convergence Education using No Code Data Analysis Tool (노 코드 데이터 분석 도구를 활용한 정보·수학·과학 융합교육 교양 강좌 개발)

  • Soyul Yi;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.447-448
    • /
    • 2023
  • 본 연구에서는 비전공자들을 위한 디지털 교육을 위하여 노 코드 프로그램을 활용한 정보, 수학, 과학 융합교육 교양 강좌를 개발하였다. 노 코드 프로그램으로는 오렌지3 데이터 마이닝을 선정하였는데, 이는 데이터 분석, 시각화, 머신러닝 모델의 활용이 용이하다는 강점을 가지고 있다. 또한, 산업환경 변화에 대비하는 핵심 교과인 과학, 수학, 정보의 중요성과 데이터 분석과의 밀접성을 고려하여 교육 내용을 융합할 수 있도록 선정하였다. 개발된 교육 프로그램은 8인이 전문가 검토 결과 내용 타당도가 확보되었음을 확인할 수 있었다. 추후 연구에서는 이 강좌를 대학의 학부생에게 적용하여 그 효과성을 확인해 보고자 한다.

  • PDF

A Review of the Methodology for Sophisticated Data Classification (정교한 데이터 분류를 위한 방법론의 고찰)

  • Kim, Seung Jae;Kim, Sung Hwan
    • Journal of Integrative Natural Science
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • 전 세계적으로 인공지능(AI)을 구현하려는 움직임이 많아지고 있다. AI구현에서는 많은 양의 데이터, 목적에 맞는 데이터의 분류 등 데이터의 중요성을 뺄 수 없다. 이러한 데이터를 생성하고 가공하는 기술에는 사물인터넷(IOT)과 빅데이터(Big-data) 분석이 있으며 4차 산업을 이끌어 가는 원동력이라 할 수 있다. 또한 이러한 기술은 국가와 개인 차원에서 많이 활용되고 있으며, 특히나 특정분야에 집결되는 데이터를 기준으로 빅데이터 분석에 활용함으로써 새로운 모델을 발견하고, 그 모델로 새로운 값을 추론하고 예측함으로써 미래비전을 제시하려는 시도가 많아지고 있는 추세이다. 데이터 분석을 통한 결론은 데이터가 가지고 있는 정보의 정확성에 따라 많은 변화를 가져올 수 있으며, 그 변화에 따라 잘못된 결과를 발생시킬 수도 있다. 이렇듯 데이터의 분석은 데이터가 가지는 정보 또는 분석 목적에 맞는 데이터 분류가 매우 중요하다는 것을 알 수 있다. 또한 빅데이터 분석결과 통계량의 신뢰성과 정교함을 얻기 위해서는 각 변수의 의미와 변수들 간의 상관관계, 다중공선성 등을 고려하여 분석해야 한다. 즉, 빅데이터 분석에 앞서 분석목적에 맞도록 데이터의 분류가 잘 이루어지도록 해야 한다. 이에 본 고찰에서는 AI기술을 구현하는 머신러닝(machine learning, ML) 기법에 속하는 분류분석(classification analysis, CA) 중 의사결정트리(decision tree, DT)기법, 랜덤포레스트(random forest, RF)기법, 선형분류분석(linear discriminant analysis, LDA), 이차선형분류분석(quadratic discriminant analysis, QDA)을 이용하여 데이터를 분류한 후 데이터의 분류정도를 평가함으로써 데이터의 분류 분석률 향상을 위한 방안을 모색하려 한다.

The Prediction of Survival of Breast Cancer Patients Based on Machine Learning Using Health Insurance Claim Data (건강보험 청구 데이터를 활용한 머신러닝 기반유방암 환자의 생존 여부 예측)

  • Doeggyu Lee;Kyungkeun Byun;Hyungdong Lee;Sunhee Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2023
  • Research using AI and big data is also being actively conducted in the health and medical fields such as disease diagnosis and treatment. Most of the existing research data used cohort data from research institutes or some patient data. In this paper, the difference in the prediction rate of survival and the factors affecting survival between breast cancer patients in their 40~50s and other age groups was revealed using health insurance review claim data held by the HIRA. As a result, the accuracy of predicting patients' survival was 0.93 on average in their 40~50s, higher than 0.86 in their 60~80s. In terms of that factor, the number of treatments was high for those in their 40~50s, and age was high for those in their 60~80s. Performance comparison with previous studies, the average precision was 0.90, which was higher than 0.81 of the existing paper. As a result of performance comparison by applied algorithm, the overall average precision of Decision Tree, Random Forest, and Gradient Boosting was 0.90, and the recall was 1.0, and the precision of multi-layer perceptrons was 0.89, and the recall was 1.0. I hope that more research will be conducted using machine learning automation(Auto ML) tools for non-professionals to enhance the use of the value for health insurance review claim data held by the HIRA.

Gradient Descent Training Method for Optimizing Data Prediction Models (데이터 예측 모델 최적화를 위한 경사하강법 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.305-312
    • /
    • 2022
  • In this paper, we focused on training to create and optimize a basic data prediction model. And we proposed a gradient descent training method of machine learning that is widely used to optimize data prediction models. It visually shows the entire operation process of gradient descent used in the process of optimizing parameter values required for data prediction models by applying the differential method and teaches the effective use of mathematical differentiation in machine learning. In order to visually explain the entire operation process of gradient descent, we implement gradient descent SW in a spreadsheet. In this paper, first, a two-variable gradient descent training method is presented, and the accuracy of the two-variable data prediction model is verified by comparison with the error least squares method. Second, a three-variable gradient descent training method is presented and the accuracy of a three-variable data prediction model is verified. Afterwards, the direction of the optimization practice for gradient descent was presented, and the educational effect of the proposed gradient descent method was analyzed through the results of satisfaction with education for non-majors.