• 제목/요약/키워드: AI 기반 수학 교수.학습

검색결과 15건 처리시간 0.02초

AI 기반 수학 교수·학습에 대한 체계적 문헌 고찰: AI의 역할과 교사의 역할을 중심으로 (Systematic literature review on AI-based mathematics teaching and learning: Focusing on the role of AI and teachers)

  • 윤정은;권오남
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권3호
    • /
    • pp.573-591
    • /
    • 2024
  • 본 연구는 AI 기반 수학 교수·학습에 대한 문헌을 체계적, 종합적으로 고찰하여 연구 동향을 탐색하고자 수행되었다. 이를 위해 최근 10년 간의 수학교육 문헌 중 문헌선정기준에 부합하는 57개의 문헌을 연구 대상, 연구 방법, 연구 목적, 학습 내용, AI의 유형, AI의 역할, 교사의 역할 측면에서 체계적 문헌 고찰하였다. 연구 결과, 연구 대상 중 학생을 대상으로 한 연구가 51%로 가장 많은 비중을 차지했으며, 연구 방법 중 양적 연구의 비중이 49%로 가장 높았다. 연구 목적은 효과 분석 44%, 이론적 논의 35%, 수업 사례 탐색 21%로 분포했다. 학습 내용으로 '수와 연산'과 '문자와 식'이 가장 많이 다루어졌고, AI 유형 중 지능형 튜터링 시스템(ITS)이 가장 많이 사용되었다. AI의 역할은 학습자 교수의 비중이 40.4%로 가장 높았으며, 교수자 지원 22.8%, 학습자 지원 21%, 시스템 지원 15.8% 순으로 분포하였다. 교사의 역할은 초기 연구일수록 'AI 수용자'로서의 역할이, 최근 연구일수록 'AI와의 건설적 파트너'로서의 역할이 부각되었고, 각 역할이 교육학적, AI-기술적, 내용적 측면에서 탐색되었다. 이를 통해 국내 수학교육 후속 연구의 방향이 제안되었고, AI 기반 수학 교수·학습에서의 교사가 갖추어야 할 소양이 논의되었다.

개별화 맞춤형 수학 학습을 지원하는 AI 기반 플랫폼 분석 (AI-Based Educational Platform Analysis Supporting Personalized Mathematics Learning)

  • 김세영;조미경
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제36권3호
    • /
    • pp.417-438
    • /
    • 2022
  • 본 연구의 목적은 개별화 맞춤형 수학 학습을 지원하는 AI 기반 플랫폼 활용 시 고려해야 할 교수·학습에 관한 시사점을 제안하는 것이다. 이를 위해 국내·외 공교육에서 활용되고 있는 플랫폼 5개(똑똑!수학탐험대, 노리AI스쿨수학, 칸 아카데미, MATHia, CENTURY)를 분석대상으로 선정하여, AI 기반 수학교육 플랫폼이 개별화 맞춤형 학습을 지원하기 위한 세 가지 요소(PLP, PLN, PLE)를 어떻게 반영하고 있는지를 분석하였다. 그 결과, 각 플랫폼에서 구현하고 있는 PLP, PLN, PLE의 특징은 다양했지만, PLP와 PLN을 바탕으로 학습자가 자율적으로 학습에 대한 의사결정을 내릴 수 있는 PLE를 형성할 수 있도록 설계된 것으로 분석되었다. 본 연구의 의의는 AI 기반 수학교육 플랫폼을 활용하는 개별화 맞춤형 수학 학습에 대한 이해도와 실천 가능성을 높였다는 데에서 찾을 수 있다.

인공지능(AI) 기반 맞춤형 학습의 효과검증: 기초 수학수업 사례 중심으로 (Validation of the effectiveness of AI-Based Personalized Adaptive Learning: Focusing on basic math class cases)

  • 범은애;전열어;한지연
    • 사물인터넷융복합논문지
    • /
    • 제9권3호
    • /
    • pp.35-43
    • /
    • 2023
  • 본 연구는 AI 기반 맞춤형 학습 시스템을 시범적으로 운영하여 대학 수업에서의 AI 기반 맞춤형 학습 시스템의 적용 가능성과 효용성을 알아보고자 하였다. 이를 위하여 C지역 소재 B대학교 1학년 재학생 중 기초수학 교과목 수업에 참여한 42명 학습자를 대상으로 AI 기반 맞춤형 학습 시스템을 적용 및 운영하였고, 학생 및 교수를 대상으로 설문 문항 조사와 인터뷰를 진행하였다. 연구 결과, AI 기반 맞춤형 학습 시스템의 활용은 학생의 학업성취도를 향상시켰다. 심층인터뷰 결과 교수자와 학습자 모두 기초 개념 학습에 있어 학습 성과 향상에 기여하는 것으로 파악되었다. 이는 AI 기반의 맞춤형 학습 시스템이 자기 주도 학습의 역량을 향상하고 개념학습을 통해 지식 강화에 효과적인 방안이 될 것임을 시사한다. 본 연구는 인공지능 기반 적응형 학습 시스템의 기초 과학 교과목 도입과 적용에 관련한 기초자료로 활용될 수 있을 것이다. 향후 AI 기반 맞춤형 학습에서 학생들에게 제공한 학습과정과 분석한 데이터를 대면수업에 연계한 효과 검증과 분석한 데이터의 활용 방안에 대한 전략 연구를 제언한다.

인공지능 기반 개인 맞춤 수학학습 서비스 개발 방향에 관한 연구 (A Study on Development Strategies for Artificial Intelligence-Based Personalized Mathematics Learning Services)

  • 현주은;이지근;이대환;이영석;구덕회
    • 실천공학교육논문지
    • /
    • 제15권3호
    • /
    • pp.605-614
    • /
    • 2023
  • 디지털 대전환 시대를 맞아 개인 맞춤형 교육을 실현하기 위해 교육 분야에서 인공지능 기반 학습 서비스들이 등장하고 있다. 본 연구에서는 인공지능 기반 학습 서비스를 학교 현장에 적용하기 위한 개발 방향을 살펴보고자 하였다. 인공지능 기반 수학학습 서비스로 아이스크림에듀에서 개발한 '수학의 세포들'을 선택하여 교수자 관점에서 기능별 요구를 조사하였다. 그 결과를 IPA를 활용하여 중요도와 적합도로 분석하면서 전문가 의견을 조사하여 서비스의 구체적인 개발 방향을 탐색하였다. 연구결과, 진단, 학습, 평가, 관리 등 모든 영역에서의 중요도는 평균 4.82, 적합도는 평균 4.56로 대부분의 문항에서 우수한 결과가 나타났으며, 특히 중요도가 적합도보다 높게 나타났다. 세부적인 일부 기능 중 개념 학습, 맞춤형 과제 제시, 평가 결과 분석 기능, 대시보드 관련 기능과 대시보드 내 학습 자료가 학생들이 이해하기에 직관적이지 않아 보완이 필요하다는 의견을 확인하였다. 본 연구는 교수자의 관점에서 인공지능 기반 수학학습 서비스에 대한 요구 및 전문가 의견을 정리하여 '수학의 세포들'의 방향을 탐색하는데 유의미한 정보를 제공하였다는 의의가 있다.

대학수학교육에서의 챗GPT 활용과 사례 (Use of ChatGPT in college mathematics education)

  • 이상구;박도영;이재윤;임동선;이재화
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.123-138
    • /
    • 2024
  • 본 연구는 S대학 <인공지능을 위한 기초수학[Math4AI]> 강좌의 교수·학습과정에서 맞춤형 챗GPT를 개발하여 활용한 경험을 공유한다. 연구진은 ① 먼저 강좌 맞춤형 챗GPT (https://math4ai.solgitmath.com/)를 개발하였다. 이때 챗GPT가 부정확한 정보를 주지 않도록 수년간의 해당 강좌 주요 데이터(교재, 실습실, 토론 기록, 코드 등)를 우선적으로 학습하는 챗GPT의 기능을 적용하였다. ② 학생들이 교재를 스스로 학습하다 궁금한 부분이 생기면, 맞춤형 챗GPT 인터페이스를 통해 자연어로 수학 용어, 정리, 예제, 열린 문제 번호, 핵심어 등을 질문하여 도움을 얻을 수 있도록 하였다. 그러면 챗GPT는 관련된 주요 문제나 용어, 그리고 이전 학생들의 토론에 기반한 몇 가지 샘플 답안 또는 토론 내용과 함께 사용되었던 코드 샘플을 제공한다. ③ 학생들이 챗GPT를 통해 얻은 내용을 스스로 윤문하여 공유하고, 상호 토론하면서, 교재에서 제시하는 주요 개념과 열린 문제의 대부분을 이해하도록 하였다. ④ 학기 말에는 그간 본인이 얻은 열린 문제들에 대한 학습기록을 모아 PBL (Problem-Based Learning) 보고서로 제출하고, 발표하여 강좌를 수료하도록 하였다. 이러한 방식은 학생들이 학습을 포기하지 않고 한 단계 앞으로 더 나아갈 추진력과 동기를 주며, 궁극적으로 각각의 문제를 스스로 해결하는 자기 주도적 학습을 도울 수 있다. 또한 학생들 각자의 수준에 맞추어 실시간으로 최적화된 조언을 제시하므로 강좌뿐만 아니라 대학수학교육 전반에 대한 학생별 맞춤형 교육(personalized education)을 제공할 수 있다. 즉, 학생들이 담당교수(또는 조교)와 AI 조교의 도움으로 실시간 답변과 효과적인 조언을 받을 수 있게 됨을 의미한다. 이는 양질의 조교 부족에 대한 고민을 추가 비용 없이 획기적으로 해결할 수 있다. 본 연구는 강좌의 교수·학습과정에 교재 맞춤형 챗GPT를 접목한 것으로, 인공지능(AI) 기술을 기타 대학수학 과목들(미적분학, 선형대수학, 이산수학, 공학수학, 기초통계학 등)과 초·중·고 수학교육에 적용할 수 있는 새로운 방법을 제시한다. 특히 AI 기술을 적용하여 이전 수강생들의 학습기록(열린 문제 풀이, 토론 자료, 코드 등)을 참고하며, 각자 실습한 결과를 공유 및 상호 토론하여 문제를 해결하는 방식은, 다양한 전공의 학생들이 내용을 더 효과적으로 이해하고, 본인 전공 관련 문제 해결 능력을 향상시키는 데 획기적인 도움을 줄 것으로 예상된다. 또한 교재 맞춤형 챗GPT와 함께 자기주도적인 학습을 경험토록 하는 교수학습 방법은 평생 교육(lifelong learning, extension school, extension college, extended college) 또는 평생학습의 관점에서 중요하다.

개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델 (A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning)

  • 이화영
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권4호
    • /
    • pp.333-348
    • /
    • 2023
  • 인공지능 기반의 수학 디지털교과서의 가장 핵심적인 기능으로 여겨지는 개별 맞춤형 교수·학습이 실현되기 위해서는 개별 학생의 여러 가지 특성 요인에 대한 명확한 분석과 진단이 가장 관건이다. 본 연구에서는 수학 AI 디지털교과서에서 개별 맞춤형 학습 진단을 위한 분석 요인과 도구, 데이터 수집·분석을 위한 구축 모델을 도출하였다. 이를 위하여 최근 교육부의 AI 디지털교과서 적용 계획에 따른 수학 AI 디지털교과서에 대한 요구, 개별화 맞춤형 학습과 이를 위한 데이터에 대한 선행 연구, 수학 디지털플랫폼에서 학습자 분석에 대한 요인 등이 검토되었다. 연구 결과, 연구자는 학생 개인별로 수집해야 할 데이터로 학습 분석을 위한 요인으로 학습 준비도, 과정 및 수행도, 성취도, 취약점, 성향 분석을 위한 요인으로 학습 지속 시간, 문제해결에 걸린 시간, 집중도, 수학학습 습관, 정서 분석을 위한 요인으로 자신감, 흥미, 불안, 학습의욕, 가치 인식, 태도 분석을 위한 요인으로 자기 관리, 학습 전략으로 정리하였다. 또한, 이러한 요인에 대한 데이터 수집 도구로, 문제에 대한 정오 데이터, 학습 진도율, 학생 활동에 대한 화면 녹화 자료, 이벤트 데이터, 시선 추적 장치, 자기 응답 설문 등을 제안하였다. 최종적으로 이러한 요인들을 학습 전, 중, 후로 시계열화한 데이터 수집 모델이 제안되었다.

대학수학 경사하강법(gradient descent method) 교수·학습자료 개발 (A Study on the Development of Teaching-Learning Materials for Gradient Descent Method in College AI Mathematics Classes)

  • 이상구;남윤;이재화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권3호
    • /
    • pp.467-482
    • /
    • 2023
  • 본 논문에서는 인공지능 알고리즘에서 많이 사용되는 경사하강법(gradient descent method)을 대학수학 강좌에서 인공지능 활용사례로 사용할 수 있도록 연구한 교수·학습 기초자료를 소개한다. 특히 대학 미적분학 수준에서도 가르칠 수 있도록 자세한 개념 설명과 함께 복잡한 함수에 관해서도 쉽게 계산할 수 있도록 파이썬(Python) 기반의 SageMath 코드를 제공한다. 그리고 실제 인공지능 응용과 연계하여 선형회귀에서 발생하는 최소제곱문제를 경사하강법을 활용하여 풀이한 예시도 함께 소개한다. 본 연구는 대학 미적분학 뿐만 아니라 공학수학, 수치해석, 응용수학 등과 같은 고급 수학 과목을 지도하는 다양한 교수자들에게 도움이 될 수 있다.

GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석 (Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics)

  • 권미선
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권3호
    • /
    • pp.467-484
    • /
    • 2024
  • 생성형 인공지능의 급속한 발전으로 이제 프로그래머의 도움 없이 누구나 개인 맞춤형 챗봇을 제작하고 이를 무료로 활용할 수 있는 시대가 열렸다. 본 연구는 예비 교사 교육을 목적으로, OpenAI의 GPTs 기반 맞춤형 챗봇을 개발하였다. 개발된 맞춤형 챗봇은 대규모 언어 모델(Large Language Model, LLM)을 토대로한 생성형 AI를 이용했기 때문에 그 응답 또한 확률적이므로, 맞춤형 챗봇의 개발 절차뿐만 아니라 그 응답이 적절한지에 대한 점검이 필요하다. 이를 위해 예비 교사를 지도하는 교수자들이 맞춤형 챗봇의 응답에 대한 타당성을 5점 척도로 분석하여 수학교육적 성능을 살펴보았다. 동일한 질문에 대한 범용적인 챗봇인 ChatGPT, 맞춤형 챗봇인 GPT, 그리고 초등수학교육 전문가의 응답을 교수자들이 분석한 결과, 초등수학교육 전문가의 응답은 평균 4.52점을, 맞춤형 챗봇인 GPT는 평균 3.73점을 받아 맞춤형 챗봇인 GPT의 응답은 초등수학교육 전문가의 수준에는 미치지 못하는 것으로 나타났다. 하지만 5점 척도에서 보통 이상으로 '적절하다'에 가까운 점수를 받아 맞춤형 챗봇인 GPT의 교육적 활용 가능성을 확인할 수 있었다. 한편, 범용적인 챗봇인 ChatGPT의 응답은 평균 2.86점으로 낮은 평가를 받았으며, 예비 교사를 지도하는 교수자들은 답변 내용이 체계적이지 않고 일반적인 수준에 머물러 있다고 평가하였다. 이에 범용적인 챗봇인 ChatGPT는 수학교육에 한정하여 사용하기에는 어려움이 있어 보인다. 기존의 맞춤형 챗봇이 교육적 효과를 입증했음에도 불구하고, 그 제작 과정에서 요구되는 시간과 비용이 큰 장애물로 작용해왔다. 그러나 이제 GPTs 서비스를 통해 누구나 손쉽게 교수자 및 학습자에게 적절한 맞춤형 챗봇을 제작할 수 있으며, 그 응답이 일정 수준 이상의 수학교육적 타당성을 보여 수학교육의 다양한 측면에서 효과적으로 활용할 수 있을 것이다.

수학 AI 디지털교과서의 도입: 초등학교 교사가 바라본 인식, 요구사항, 그리고 도전 (Introduction of AI digital textbooks in mathematics: Elementary school teachers' perceptions, needs, and challenges)

  • 김소민;이기마;김희정
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제27권3호
    • /
    • pp.199-226
    • /
    • 2024
  • 인공지능(AI)과 디지털 기술의 도입 등과 같은 디지털 기반 변화의 시대를 맞아, 2025년에는 수학, 영어, 정보 교과에 AI 디지털교과서를 단계적으로 도입하는 교육혁신이 추진되고 있다. 본 연구는 2023년 11월 전국 132명의 초등학교 교사를 대상으로 실시한 설문조사를 통해 교사들의 수학 AI 디지털교과서에 대한 이해도, 핵심 기술의 필요성, 수업 활용에 대한 인식, 그리고 AI 디지털교과서의 학교 현장에의 안착을 위한 요구사항을 조사하였다. 분석 결과, 대다수 교사들은 수학 AI 디지털교과서의 도입과 필요성에 대해 낮은 인식을 보였지만, 일부 교사들은 개인별 맞춤형 학습 및 효과적인 교수·학습 지원 가능성을 인식하고 있었다. 또한, 교사들은 AI 디지털교과서의 학습 진단과 교사 재구성 기능의 필요성을 높게 평가했으며, 수업에서의 유용성을 긍정적으로 평가했지만, AI 디지털교과서의 도입으로 인해 교실에서의 상호작용성은 저하시킬 것이라고 우려했다. 이는 AI 디지털교과서의 성공적 도입 및 활용을 위해 교사연수 및 정보 제공을 통한 인식 변화의 필요성을 시사하며, 구체적이고 실용적인 활용 방안 제공, 디지털 과잉 사용 및 의존에 대한 대안 모색, 핵심 기술의 지속적 개발 등, 이와 관련한 연구의 지속적인 필요성을 제언한다.

생성형 인공지능의 수학 문제 풀이에 대한 성능 분석: ChatGPT 4, Claude 3 Opus, Gemini Advanced를 중심으로 (Analysis of generative AI's mathematical problem-solving performance: Focusing on ChatGPT 4, Claude 3 Opus, and Gemini Advanced)

  • 오세준;윤정은;정유진;조윤주;심효섭;권오남
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권3호
    • /
    • pp.549-571
    • /
    • 2024
  • 디지털·AI 기반 교수·학습이 강조됨에 따라 생성형 AI의 교육적 활용에 대한 논의가 활발해지고 있다. 본 연구는 고등학교 1학년 수학 교과서 5종의 예제와 문제 풀이에 대한 ChatGPT 4, Claude 3 Opus, Gemini Advanced의 수학적 성능을 분석하였다. 총 1,317개 문항에 대해 전체 정답률과 기능별 특징을 살펴본 결과, ChatGPT 4의 전체 정답률이 0.85로 가장 높았고, Claude 3 Opus가 0.67, Gemini Advanced가 0.42 순으로 나타났다. 기능별로는 함수 구하기와 증명하기에서 세 모델 모두 높은 정답률을 보였으나, 설명하기와 그래프 그리기에서는 상대적으로 낮은 정답률을 보였다. 특히 경우의 수 세기에서 ChatGPT 4와 Claude 3 Opus가 1.00의 정답률을 보인 반면, Gemini Advanced는 0.56으로 낮았다. 또한 모든 모델이 벤 다이어그램을 이용한 설명하기와 이미지 생성이 필요한 문제에서 어려움을 겪었다. 연구 결과를 바탕으로 교사들은 각 AI 모델의 강점과 한계를 파악하고 이를 수업에 적절히 활용할 수 있을 것이다. 본 연구는 생성형 AI의 수학적 성능을 분석함으로써, 실제 수학 수업에서의 생성형 AI의 활용 가능성을 제시했다는 점에서 의의가 있다. 또한 인공지능시대의 수학 교육에서 교사의 역할을 재정립하는 데 중요한 시사점을 제공하였다. 향후 생성형 AI와 교사의 협력적 교육 모델 개발, AI를 활용한 개별화 학습 방안 연구 등이 필요할 것이다.