• 제목/요약/키워드: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.038 seconds

AI-Based Project Similarity Evaluation Model Using Project Scope Statements

  • Ko, Taewoo;Jeong, H. David;Lee, JeeHee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.284-291
    • /
    • 2022
  • Historical data from comparable projects can serve as benchmarking data for an ongoing project's planning during the project scoping phase. As project owners typically store substantial amounts of data generated throughout project life cycles in digitized databases, they can capture appropriate data to support various project planning activities by accessing digital databases. One of the most important work tasks in this process is identifying one or more past projects comparable to a new project. The uniqueness and complexity of construction projects along with unorganized data, impede the reliable identification of comparable past projects. A project scope document provides the preliminary overview of a project in terms of the extent of the project and project requirements. However, narratives and free-formatted descriptions of project scopes are a significant and time-consuming barrier if a human needs to review them and determine similar projects. This study proposes an Artificial Intelligence-driven model for analyzing project scope descriptions and evaluating project similarity using natural language processing (NLP) techniques. The proposed algorithm can intelligently a) extract major work activities from unstructured descriptions held in a database and b) quantify similarities by considering the semantic features of texts representing work activities. The proposed model enhances historical comparable project identification by systematically analyzing project scopes.

  • PDF

Ensemble Deep Learning Model using Random Forest for Patient Shock Detection

  • Minsu Jeong;Namhwa Lee;Byuk Sung Ko;Inwhee Joe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1080-1099
    • /
    • 2023
  • Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.

A Study on the Development of Artificial Intelligence Crop Environment Control Framework

  • Guangzhi Zhao
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.144-156
    • /
    • 2023
  • Smart agriculture is a rapidly growing field that seeks to optimize crop yields and reduce risk through the use of advanced technology. A key challenge in this field is the need to create a comprehensive smart farm system that can effectively monitor and control the growth environment of crops, particularly when cultivating new varieties. This is where fuzzy theory comes in, enabling the collection and analysis of external environmental factors to generate a rule-based system that considers the specific needs of each crop variety. By doing so, the system can easily set the optimal growth environment, reducing trial and error and the user's risk burden. This is in contrast to existing systems where parameters need to be changed for each breed and various factors considered. Additionally, the type of house used affects the environmental control factors for crops, making it necessary to adapt the system accordingly. While developing such a framework requires a significant investment of labour and time, the benefits are numerous and can lead to increased productivity and profitability in the field of smart agriculture. We developed an AI platform for optimal control of facility houses by integrating data from mushroom crops and environmental factors, and analysing the correlation between optimal control conditions and yield. Our experiments demonstrated significant performance improvement compared to the existing system.

5-Neighbor Programmable CA based PRNG (프로그램 가능한 5-이웃 CA기반의 PRNG)

  • Choi, Un-Sook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.357-364
    • /
    • 2022
  • A pseudo-random number generator (PRNG) is a program used when a large amount of random numbers is needed. It is used to generate symmetric keys in symmetric key cryptography systems, generate public key pairs in public key cryptography or digital signatures, and generate columns used for padding with disposable pads. Cellular Automata (CA), which is useful for specific representing nonlinear dynamics in various scientific fields, is a discrete and abstract computational system that can be implemented in hardware and is applied as a PRNG that generates keys in cryptographic systems. In this paper, I propose an algorithm for synthesizing a programmable 5-neighbor CA based PRNG that can effectively generate a nonlinear sequence using 5-neighbor CA with the radius of the neighboring cell increased by 2.

Understanding Customer Purchasing Behavior in E-Commerce using Explainable Artificial Intelligence Techniques (XAI 기법을 이용한 전자상거래의 고객 구매 행동 이해)

  • Lee, Jaejun;Jeong, Ii Tae;Lim, Do Hyun;Kwahk, Kee-Young;Ahn, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.387-390
    • /
    • 2021
  • 최근 전자 상거래 시장이 급격한 성장을 이루면서 고객들의 급변하는 니즈를 파악하는 것이 기업들의 수익에 직결되는 요소로 인식되고 있다. 이에 기업들은 고객들의 니즈를 신속하고 정확하게 파악하기 위해, 기축적된 고객 관련 각종 데이터를 활용하려는 시도를 강화하고 있다. 기존 시도들은 주로 구매 행동 예측에 중점을 두었으나 고객 행동의 전후 과정을 해석하는데 있어 어려움이 존재했다. 본 연구에서는 고객이 구매한 상품을 확정 또는 환불하는 행동을 취할 때 해당 행동이 발생하는데 있어 어떤 요소들이 작용하였는지를 파악하고, 어떤 고객이 환불할 지를 예측하는 예측 모형을 새롭게 제시한다. 예측 모형 구현에는 트리 기반 앙상블 방법을 사용해 예측력을 높인 XGBoost 기법을 적용하였으며, 고객 의도에 영향을 미치는 요소들을 파악하기 위하여 대표적인 설명가능한 인공지능(XAI) 기법 중 하나인 SHAP 기법을 적용하였다. 이를 통해 특정 고객 행동에 대한 각 요인들의 전반적인 영향 뿐만 아니라, 각 개별 고객에 대해서도 어떤 요소가 환불결정에 영향을 미쳤는지 파악할 수 있었다. 이를 통해 기업은 고객 개개인의 의사 결정에 영향을 미치는 요소를 파악하여 개인화 마케팅에 사용할 수 있을 것으로 기대된다.

  • PDF

Web Application Implementation Using Flask Model Serving : Urinary Stone Artificial Intelligence Application (Flask 의 모델 서빙을 이용한 웹 어플리케이션 구현 : Urinary Stone 인공지능 응용)

  • Lee, Chung-Sub;Lim, Dong-Wook;No, Si-Hyeong;Kim, Ji-Eon;Yu, Yeong-Ju;Kim, Tae-Hoon;Park, Sung Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.454-456
    • /
    • 2021
  • 본 논문은 웹의 발달로 인하여 의료 서비스들이 기존의 Client-Server 방식의 제품에서 Web 방식의 제품으로 변경되고 있는 현대 흐름에서 인공지능 어플리케이션 또한 Web 으로 서비스 하기 위한 방법과 구현된 요로결석 AI 어플리케이션에 대해 기술한다. 이를 구현하기 위해 Python 기반의 Flask 라는 마이크로 웹 프레임워크를 사용하여 DICOM 핸들링, Pre-Processing, Mask 를 생성하고 Predict 결과를 Model Serving 을 통하여 Urinary Stone Segmentation Model 이 서비스되는 인공지능 웹 어플리케이션 동작 방식과 수행 결과를 보인다.

Personal Information Detection and De-identification System using Sentence Intent Classification and Named Entity Recognition (문장 의도 분류와 개체명 인식을 활용한 개인정보 검출 및 비식별화 시스템)

  • Seo, Dong-Kuk;Kim, Gun-Woo;Kim, Jae-Young;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1018-1021
    • /
    • 2020
  • 최근 개인정보가 포함된 비정형 텍스트 문서들이 유출되거나 무분별하게 공개됨으로써 정보의 주체는 물론 기업들까지 피해를 받고 있다. 데이터를 공개 및 활용하기 위해 개인정보 검출 및 비식별화 과정이 필수적이지만 정형 데이터와는 달리 비정형 데이터의 경우 해당 과정을 자동으로 처리하는 데 한계가 있다. 이를 위해 딥러닝 모델들을 사용하여 자동화하려는 연구들이 있었지만 문장 내 단어의 모호성에 대한 고려 없이 단어 개체명 정보에만 의존하여 개인정보를 검출하는 형태로 진행되었다. 따라서 문장 내 단어들 중 식별 대상인 단어들도 비식별화 되어 데이터에 대한 유용성을 저해할 수 있다는 문제점을 남겼다. 본 논문에서는 문장의 의도 정보를 단어의 개체명 학습 과정에 부가적인 정보로 활용하는 개인정보 검출 모델과 개인정보 데이터의 유용성을 고려한 비식별화 기법을 제안한다.

A Research of Optimized Metadata Extraction and Classification of in Audio (미디어에서의 오디오 메타데이터 최적화 추출 및 분류 방안에 대한 연구)

  • Yoon, Min-hee;Park, Hyo-gyeong;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.147-149
    • /
    • 2021
  • Recently, the rapid growth of the media market and the expectations of users have been increasing. In this research, tags are extracted through media-derived audio and classified into specific categories using artificial intelligence. This category is a type of emotion including joy, anger, sadness, love, hatred, desire, etc. We use JupyterNotebook to conduct the corresponding study, analyze voice data using the LiBROSA library within JupyterNotebook, and use Neural Network using keras and layer models.

  • PDF

The Management of Smart Safety Houses Using The Deep Learning (딥러닝을 이용한 스마트 안전 축사 관리 방안)

  • Hong, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.505-507
    • /
    • 2021
  • Image recognition technology is a technology that recognizes an image object by using the generated feature descriptor and generates object feature points and feature descriptors that can compensate for the shape of the object to be recognized based on artificial intelligence technology, environmental changes around the object, and the deterioration of recognition ability by object rotation. The purpose of the present invention is to implement a power management framework required to increase profits and minimize damage to livestock farmers by preventing accidents that may occur due to the improvement of efficiency of the use of livestock house power and overloading of electricity by integrating and managing a power fire management device installed for analyzing a complex environment of power consumption and fire occurrence in a smart safety livestock house, and to develop and disseminate a safe and optimized intelligent smart safety livestock house.

  • PDF

A study on the trader-centered blockchain-based bill of lading (거래자 중심의 블록체인 기반 선하증권 연구)

  • Lee, Ju-Young;Kim, Hyun-A;Sung, Chae-Min;Kim, Joung-Min
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1353-1356
    • /
    • 2021
  • 블록체인은 다수의 노드 네트워크 내에서 거래내역을 분산 저장함으로써 투명성을 확보하는 기술이다. 최근에는 금전적 가치를 지닌 선하증권(Bill of Lading, B/L 서류)에 블록체인을 적용하여 무결성을 확보하고 거래 과정을 간소화 하기위한 연구가 진행되고 있다. 본 논문에서는 거래자 중심의 블록체인 기반의 선하증권 시스템을 제안한다. 수출자는 발행 받은 선하증권을 AI(Artificial intelligence)기반의 OCR(Optical character recognition)기능을 통해 블록체인에 등록하고, 각국 은행에서 열람하여 신용장거래를 진행한다. 수입자는 선하증권 정보를 담은 QR(Quick Response code)코드로 자기증명을 하여 물품을 인도 받게 된다. 이는 수출자 측에서는 선적서류를 우편으로 보낼 시간과 비용을 단축하고, 서류의 무결성을 입증할 수 있다는 점에서 큰 효과를 얻을 수 있다. 수입자 측에서는 서류가 등록됨과 동시에 확인할 수 있고, 해당 거래를 신뢰할 수 있다는 이점을 갖는다. 마지막으로 은행 측에서는 선적서류에 대해 보안성을 갖출 수 있고 검증이 더 신속하게 이루어질 수 있다.