• Title/Summary/Keyword: AI활용교육

Search Result 363, Processing Time 0.024 seconds

Domestic Research Trends of Learning with AI (국내 AI활용교육 연구동향)

  • Huh, Miseon;Bae, Yoonju;Seok, Huijin;Lee, Jeongmin
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.973-985
    • /
    • 2021
  • The purpose of this study is to suggest the direction and implications of learning with AI in the future by analyzing the trends of research learning with AI in the field of education. For doing this, the final 78 papers published in domestic journals over the past three years from 2019 to July 2021 were selected for analysis through review. The analysis results are as follows. First of all, papers in 2020 among the three years were most published, and the most utilized research method was the qualitative research. In addition, according to the analysis by study subject, studies on elementary school students were the most common, followed by studies on college and graduate students. In the analysis by subject, research related to foreign language education was most utilized and chatbot was most used in the AI technology type. Finally, the research learning with AI accounted for the majority, and student support accounted for the majority as the type of education system learning with AI at the implementation stage among the areas of teaching and learning and evaluation. Based on these results, the direction and implications of learning with AI in the future were presented. This study is meaningful in that it grasped research trends of learning with AI in domestic from an overall perspective, and examined learning with AI focusing on the instructor-learner and the teaching and learning design process.

Verification of the effectiveness of AI education for Non-majors through PJBL-based data analysis (PJBL기반 데이터 분석을 통한 비전공자의 AI 교육 효과성 검증)

  • Baek, Su-Jin;Park, So-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.201-207
    • /
    • 2021
  • As artificial intelligence gradually expands into jobs, iIt is necessary to nurture talents with AI literacy capabilities required for non-majors. Therefore, in this study, based on the necessity and current status of AI education, AI literacy competency improvement education was conducted for non-majors so that AI learning could be sustainable in relation to future majors. For non-majors at University D, problem-solving solutions through project-based data analysis and visualization were applied over 15 weeks, and the AI ability improvement and effectiveness of learners before and after education were analyzed and verified. As a result, it was possible to confirm a statistically significant level of positive change in the learners' data analysis and utilization ability, AI literacy ability, and AI self-efficacy. In particular, it not only improved the learners' ability to directly utilize public data to analyze and visualize it, but also improved their self-efficacy to solve problems by linking this with the use of AI.

Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities (비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계)

  • Baek, Su-Jin;Shin, Yoon-Hee
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • With the advent of the 4th Industrial Revolution, AI utilization capabilities are being emphasized in various industries, but AI education design and curriculum research as universal education is currently lacking. This study offers a design for universal AI education to further cultivate its use in universities. For the AI basic education design, a questionnaire was conducted for experts three times, and the reliability of the derived design contents was verified by reflecting the results. As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived were data structure understanding and processing, visualization, word cloud, public data utilization, and machine learning concept understanding and utilization. The educational design content derived through this study is expected to increase the value of competency-centered AI universal education in the future.

An Analysis of Artificial Intelligence Education Research Trends Based on Topic Modeling

  • You-Jung Ko
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • This study aimed to analyze recent research trends in Artificial Intelligence (AI) education within South Korea with the overarching objective of exploring the future direction of AI education. For this purpose, an analysis of 697 papers related to AI education published in Research Information Sharing Service (RISS) from 2016 to November 2023 were analyzed using word cloud and Latent Dirichlet Allocation (LDA) topic modeling technique. As a result of the analysis, six major topics were identified: generative AI utilization education, AI ethics education, AI convergence education, teacher perceptions and roles in AI utilization, AI literacy development in university education, and AI-based education and research directions. Based on these findings, I proposed several suggestions, (1) including expanding the use of generative AI in various subjects, (2) establishing ethical guidelines for AI use, (3) evaluating the long-term impact of AI education, (4) enhancing teachers' ability to use AI in higher education, (5) diversifying the curriculum of AI education in universities, (6) analyzing the trend of AI research, and developing an educational platform.

An Analysis Study of SW·AI elements of Primary Textbooks based on the 2015 Revised National Curriculum (2015 개정교육과정에 따른 초등학교 교과서의 SW·AI 요소 분석 연구)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.317-325
    • /
    • 2021
  • In this paper, the degree of reflection of SW·AI elements and CT elements was investigated and analyzed for a total of 44 textbooks of Korean, social, moral, mathematics and science textbooks based on the 2015 revised curriculum. As a result of the analysis, most of the activities of data collection, data analysis, and data presentation, which are ICT elements, were not reflected, and algorithm and programming elements were not reflected among SW·AI content elements, and there were no abstraction, automation, and generalization elements among CT elements. Therefore, in order to effectively implement SW·AI convergence education in elementary school subjects, we will expand ICT utilization activities to SW·AI utilization activities. Training on the understanding of SW·AI convergence education and improvement of teaching and learning methods using SW·AI is needed for teachers. In addition, it is necessary to establish an information curriculum and secure separate class hours for substantial SW·AI education.

The Direction of AI Classes using AI Education Platform

  • Ryu, Mi-Young;Han, Seon-Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.69-76
    • /
    • 2022
  • In this paper, we presented the contents and methods of AI classes using AI platforms. First, we extracted the content elements of each stage of the AI class using the AI education platform from experts. Classes using the AI education platform were divided into 5 stages and 25 class elements were selected. We also conducted a survey of 82 teachers and analyzed the factors that they acted importantly at each stage of the AI platform class. As a result of the analysis, teachers regarded the following contents as important factors for each stage that are AI model preparation stage (the learning stage of the AI model), problem recognition stage (identification of problems and AI solution potential), data processing stage (understanding the types of data), AI modelingstage (AI value and ethics), and problem solvingstage (AI utilization in real life).

Analyzing the effects of artificial intelligence (AI) education program based on design thinking process (디자인씽킹 프로세스 기반의 인공지능(AI) 교육 프로그램 적용 효과분석)

  • Lee, Sunghye
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.49-59
    • /
    • 2020
  • At the beginning of the discussion of AI education in K-12 education, the study was conducted to develop and apply an AI education program based on Design Thinking and analyze the effects of the AI education programs. In the AI education program, students explored and defined the AI problems they were interested in, gathered the necessary data to build an AI model, and then developed a project using scratch. In order to analyze the effectiveness of the AI education program, the change of learner's perception of the value of AI and the change of AI efficacy were analyzed. The overall perception of the AI project was also analyzed. As a result, AI efficacy was significantly increased through the experience of carrying out the project according to the Design Thinking process. In addition, the efficacy of solving problems with AI was influenced by the level of use of programming languages. The learner's overall perception of the AI project was positive, and the perceptions of each stage of the AI project (AI problem understanding and problem exploration, practice, problem definition, problem solving idea implementation, evaluation and presentation) was also positive. This positive perception was higher among students with high level of programming language use. Based on these results, the implications for AI education were suggested.

Elementary School Teachers' Perceptions of Using Artificial Intelligence in Mathematics Education (수학교육에서의 인공지능 활용에 대한 초등 교사의 인식 탐색)

  • Kim, JeongWon;Kwon, Minsung;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.299-316
    • /
    • 2023
  • With the importance and necessity of using AI in the field of education, this study aims to explore elementary school teachers' perceptions of using Artificial Intelligence (AI) in mathematics education. For this purpose, we conducted a survey using a 5-point Likert scale with 161 elementary school teachers and analyzed their perceptions of mathematics education with AI via four categories (i.e., Attitude of using AI, AI for teaching mathematics, AI for learning mathematics, and AI for assessing mathematics performance). As a result, elementary school teachers displayed positive perceptions of the usefulness of AI applications to teaching, learning, and assessment of mathematics. Specifically, they strongly agreed that AI could assist personalized teaching and learning, supplement prerequisite learning, and analyze the results of assessment. They also agreed that AI in mathematics education would not replace the teacher's role. The results of this study also showed that the teachers exhibited diverse perceptions ranging from negative to neutral to positive. The teachers reported that they were less confident and prepared to teach mathematics using AI, with significant differences in their perceptions depending on whether they enacted mathematics lessons with AI or received professional training courses related to AI. We discuss the implications for the role of teachers and pedagogical supports to effectively utilize AI in mathematics education.

Analyzing Teachers' Educational Needs to Strengthen AI Convergence Education Capabilities (AI 융합교육 역량 강화를 위한 교사의 교육요구도 분석)

  • JaMee Kim;Yong Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.121-130
    • /
    • 2023
  • In the school field, AI convergence education is recommended, which utilizes AI in education to change the paradigm of society. This study was conducted to define the terms of AI and AI convergence education to minimize the confusion of terms and to analyze the educational needs of teachers from the perspective of conducting AI convergence education. To achieve the purpose, 19 experts' opinions were collected, and a self-administered questionnaire was administered to 125 secondary school teachers enrolled in the AI convergence major at the Graduate School of Education. As a result of the analysis, the experts defined AI convergence education as a methodology for problem solving, not AI-based or utilization education. In the analysis of teachers' educational needs, "AI and big data" was ranked first, followed by "AI convergence education methodology" and "learning practice using AI". The significance of this study is that it defined the terminology by collecting the opinions of experts amidst the confusion of various terms related to AI, and presented the educational direction of AI convergence education for in-service teachers.

Ethical Dilemma on Educational Usage of A.I. Speaker (인공지능 스피커의 교육적 활용에서의 윤리적 딜레마)

  • Han, Jeonghye;Kim, Jong-Wook
    • Journal of Creative Information Culture
    • /
    • v.7 no.1
    • /
    • pp.11-19
    • /
    • 2021
  • With the announcement of the AI national strategy, various policies for AI education are being proposed, and AI convergence education for teachers is actively being promoted. In addition, AI speakers are being sold and distributed to each home, and field studies of educational use of AI speakers have just started. This study examines the controversial problems that AI speakers may cause in AI ethics, and attempts to derive an ethical dilemma that may arise when AI speakers are used at home or at school. This dilemma can be used in the moral competence test (MCT), which measures the level of moral judgment for each group of artificial intelligence speakers.