• Title/Summary/Keyword: AEMS

Search Result 12, Processing Time 0.022 seconds

Design and Implementation of Intelligent Aircraft Power Measurement System Based on Embedded (지능형 항공기 전력 계측 임베디드 시스템에 설계 및 구현)

  • Choi, Won-Huyck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.664-671
    • /
    • 2013
  • In this paper, in an aircraft power can be measured by wireless AEMS (aircraft electric power measurement monitoring system) system is proposed. AEMS has been design based on current commercialized power measuring systems analysis with improvement and connects it with most talked about item, smart phone and monitoring system. And also adopting real time power measuring system, constitute more practical power measuring system by controlling electricity usage in real time.

Intelligent Information Technologies for Integrated Management Systems of Enterprises with A Complex Scheme of Gas-Extraction and Processing

  • Matvienko, Evgeny V.;Adilov, F.T.;Ivanyan, A.I.
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.249-254
    • /
    • 2015
  • This article considers the development of an integrated control and safety management system (ICSS) and its interfaces with an automated enterprise management system (AEMS) in light of the establishment of industrial enterprises with intelligent model of centralized management on the example of Kandym GPP.

A Study on Fuel Cells Employing Anion-Exchange Membranes (음이온교환막을 채용하는 연료전지에 관한 연구)

  • Park, Jin-Soo;Park, Seok-Hee;Yang, Tae-Hyun;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.77-80
    • /
    • 2006
  • Chloromethylated polysulfone(CMPSf) and a number of mono- and diamine compounds were used to prepare anion-exchange membranes(AEMs) and an ionomer binder solution. The properties of the AEMs were investigated such as $OH^-$ conductivity, water content and dimension stability. Chloromethylation and amination of PSf were optimized in terms of the properties. Membrane-electrode assemblies were fabricated using anion-exchange membranes and the ionomer binder for solid alkaline fuel cells and direct borohydride fuel cells.

  • PDF

A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone) (수지상 폴리(알릴렌 이써 설폰)에 도입된 지방족 알킬사슬 연결자길이에 따른 음이온교환막의 특성 연구)

  • KIM, HYUN JIN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduction of these branched structures is an attempt to overcome the low ionic conductivity and stability problems that AEMs are currently facing. To this end, branched polymers with different spacer lengths were synthesized and properties of each membrane prepared according to the branched structure were compared. The chemical structure of the polymer was investigated by proton nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography, and the thermal properties were investigated using thermogravimetric analysis. The branched anion exchange membrane with (CH2)3 and (CH2)6 spacers exhibited ionic conductivities of 8.9 mS cm-1 and 22 mS cm-1 at 90℃, respectively. This means that the length of the spacer affects the ionic conductivity. Therefore, this study showing the effect of the spacer length on the ionic conductivity of the membrane in the polymer structure constituting the ion exchange membrane is judged to be very useful for future application studies of AEM fuel cells.

Role of Graphene Derivatives in Anion Exchange Membrane for Fuel Cell: Recent Trends (연료전지용 음이온교환막에서 그래핀 유도체의 역할: 최근 동향)

  • Manoj, Karakoti;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.411-426
    • /
    • 2022
  • Energy plays a significant role in modern lifestyle because of our extensive reliance over energy-operating devices. Therefore, there is a need for alternative and green energy resources that can fulfill the energy demand. For this, fuel cell (FCs) especially anion exchange membrane fuel cells (AEMFCs) have gained tremendous attention over the other (FCs) due to their fast reaction kinetics without using noble catalyst and allow to use of cheaper polymers with high performance. But lack of highly conductive, chemically, and mechanically stable anion exchange membrane (AEM) still main obstacle to the development of high performance AEMFCs. Therefore, graphene-based polymer composite membranes came into the existence as AEMs for the FCs. The exceptional properties of the graphene help to improve the performance of AEMs. Still, there are lot of challenges in the graphene derivatives based AEMs because of their high tendency of agglomeration in polymer matrix which reduced their potential. To overcome this issue surface modification of graphene derivatives is necessary to restrict their agglomeration and conserved their potential features that can help to improve the performance of AEM. Therefore, this review focus on the surface modification of graphene derivatives and their role in the fabrication of AEMs for the FCs.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Polishing Surface State Monitoring of Automatic Polishing Process Using Acoustic Emission Signal (AE 신호를 이용한 자동 연마가공에서의 연마면 상태감시)

  • 김동환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.8-13
    • /
    • 2000
  • Die polishing technology is very critical to determine quality and performance of the final products. Die polishing processes have not been automated because the automation requires a great deal of experience and skill of experts. Thus, to implement a fully automated polishing process, the development of polishing status monitoring system replacing the skill of experts is critical. AE is known to be closely related to material removal rate(MRR). As the surface is rougher, MRR gets larger and AE increased. The surface roughness can be indirectly estimated using the AE signal measured during automatic die polishing process. In this study, The polishing state monitoring system using AEms signal was developed. This system can be not only to monitor the abnormal state but also to estimate a state of surface roughness of polishing surface qualitatively.

  • PDF

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran;Wu, Liang;Hossain, Md. Masem;Pan, Jiefeng;Ran, Jin;Mondal, Abhishek N.;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.365-378
    • /
    • 2015
  • Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes (셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막)

  • Da Hye Sim;Young Park;Young-Woo Choi;Jung Tae Park;Jae Hun Lee
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.154-162
    • /
    • 2024
  • Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.

Comparison of Properties of Two Kinds of Anion Exchange Membranes with Different Functional Group for Alkaline Fuel Cells (알칼라인 연료전지용 다른 작용기들을 갖는 두 종류의 음이온 교환 막들의 특성 비교)

  • LEE, SEUNGYEON;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.458-465
    • /
    • 2018
  • This study reports the fabrication of anion exchange membranes (AEMs) containing two kinds of functional groups: i) trimethylphosphite (TMP) and ii) trimethylamine (TMA). We carried out the synthesis of polymers to enhance thermal stability and ion conductivity. The alternative polymer was prepared using 2,2-bis(4-hydroxy-3-methylphenyl)propane and decafluorobiphenyl. The membrane was fabricated by solution casting method. The thermal stability of membranes was examined by TGA. The physiochemical properties of membranes were also investigated in terms of water uptake, swelling ratio, ion exchange capacity, and ion conductivity. The hydroxide ion conductivity of the membranes reached about 20.2 mS/cm for quaternary ammonium poly(arylene ether) (QA-PAE) containing TMA moiety and 5.1 mS/cm for quaternary phosphonium PAE (QP-PAE) containing TMP moiety at $90^{\circ}C$.