DOI QR코드

DOI QR Code

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lim, Ahyoun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, So Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Hyun S. (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2017.05.25
  • Accepted : 2017.07.05
  • Published : 2017.09.30

Abstract

The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Keywords

References

  1. A.B. Rao, E.S. Rubin, Environ. Sci. Technol., 2002, 36(20), 4467-4475. https://doi.org/10.1021/es0158861
  2. Hoffert, Martin I., et al., Science, 2002, 298(5595), 981-987. https://doi.org/10.1126/science.1072357
  3. J.M. Reilly, The Bridge, 2015, 45(2), 6-15.
  4. R. Jackson, P. Friedlingstein, J. Canadell, R. Andrew, The Bridge, 2015, 45(2), 16-21.
  5. S. Kerdsuwan, K. Laohalidanond, Energy Procedia, 2015, 79, 125-130. https://doi.org/10.1016/j.egypro.2015.11.495
  6. A. Zuttel, Mitigation and Adaptation Strategies for Global Change, 2007, 12(3), 343-365. https://doi.org/10.1007/s11027-006-9076-z
  7. K. Christopher, R. Dimitrios, Energy Environ.Sci., 2012, 5(5, 6640-6651. https://doi.org/10.1039/c2ee01098d
  8. M. Melaina, M. Penev, D. Heimiller, NREL technical report, 2013, NREL/TP-5400-55626.
  9. G. Collodi, F. Wheeler, Chem.Eng.Trans., 2010, 19, 37-42.
  10. G. Simbolotti, IEA Energy Technology Essentials, IEA, 2007.
  11. W. Kreuter, H. Hofmann, Int. J.Hydrogen Energy, 1998, 23(8), 661-666. https://doi.org/10.1016/S0360-3199(97)00109-2
  12. K. Zeng, D. Zhang, Prog. Energy Combust. Sci., 2010, 36(3), 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
  13. J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal.Today, 2009, 139(4), 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  14. P. Millet, F. Andolfatto, R. Durand, Int. J. Hydrogen Energy, 1996, 21, 87-93.
  15. A. Goni-Urtiaga, D. Presvytes, K. Scott, Int. J. Hydrogen Energy, 2012, 37(4), 3358-3372. https://doi.org/10.1016/j.ijhydene.2011.09.152
  16. K. Ito, T. Sakaguchi, Y. Tsuchiya, Polymer Electrolyte Membrane Water Electrolysis, in: Hydrogen Energy Engineering, Springer, (2016) 143-149.
  17. J.R. McKone, N.S. Lewis, H.B. Gray, Chem.Mater., 2013, 26(1), 407-414. https://doi.org/10.1021/cm4021518
  18. InfoMine Inc. (2017) Retrieved March, 2017, from http://www.infomine.com/investment/metal-prices.
  19. Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.-Y. Wang, J. Am. Chem. Soc., 2012, 134(22), 9054-9057. https://doi.org/10.1021/ja302439z
  20. V.K. Puthiyapura, S. Pasupathi, H. Su, X. Liu, B. Pollet, K. Scott, Int. J. Hydrogen Energy, 2014, 39(5), 1905-1913. https://doi.org/10.1016/j.ijhydene.2013.11.056
  21. L. Zeng, T.S. Zhao, Nano Energy, 2015, 11, 110-118. https://doi.org/10.1016/j.nanoen.2014.10.019
  22. D. Lu, D. Li, L. Wen, L. Xue, J. Membr.Sci., 2017, 533, 210-219. https://doi.org/10.1016/j.memsci.2017.03.011
  23. H. Wu, W. Jia, Y. Liu, J. Mater. Sci., 2017, 52(3), 1704-1716. https://doi.org/10.1007/s10853-016-0462-y
  24. X. Gong, X. Yan, T. Li, X. Wu, W. Chen, S. Huang, Y. Wu, D. Zhen, G. He, J. Membr. Sci., 2017, 523, 216-224. https://doi.org/10.1016/j.memsci.2016.09.050
  25. X. He, X. Jiang, Z. Wang, Y. Deng, Z. Han, Y. Yang, D. Chen, Polym. Eng. Sci., 2017 (Browse Early View Article, DOI: 10.1002/pen.24524).
  26. WANG, Lianqin, et al., Green Chemistry, 2017, 19(3), 831-843. https://doi.org/10.1039/C6GC02526A
  27. J. Li, X. Yan, X. Ruan, W. Zheng, G. He, J. Dai, R. Deng, Polym. Mater. Sci. Eng., 2016, 32, 38-42.
  28. Z. Hu, W. Tang, D. Ning, X. Zhang, H. Bi, S. Chen, Fuel Cells, 2016, 16(5), 557-567. https://doi.org/10.1002/fuce.201600015
  29. C. Wang, B. Lin, G. Qiao, L. Wang, L. Zhu, F. Chu, T. Feng, N. Yuan, J. Ding, Mater. Lett., 2016, 173, 219-222. https://doi.org/10.1016/j.matlet.2016.03.057
  30. T. Bayer, B.V. Cunning, R. Selyanchyn, T. Daio, M. Nishihara, S. Fujikawa, K. Sasaki, S.M. Lyth, J. Membr.Sci., 2016, 508, 51-61. https://doi.org/10.1016/j.memsci.2016.02.017
  31. T. Feng, B. Lin, S. Zhang, N. Yuan, F. Chu, M.A. Hickner, C. Wang, L. Zhu, J. Ding, J. Membr.Sci., 2016, 508, 7-14. https://doi.org/10.1016/j.memsci.2016.02.019
  32. A.G. Wright, J. Fan, B. Britton, T. Weissbach, H.F. Lee, E.A. Kitching, T.J. Peckham, S. Holdcroft, Energy Environ. Sci., 2016, 9(6), 2130-2142. https://doi.org/10.1039/C6EE00656F
  33. B. Shi, Y. Li, H. Zhang, W. Wu, R. Ding, J. Dang, J. Wang, J. Membr.Sci., 2016, 498, 242-253. https://doi.org/10.1016/j.memsci.2015.10.005
  34. Z. Li, W. Wang, Y. Chen, C. Xiong, G. He, Y. Cao, H. Wu, M.D. Guiver, Z. Jiang, J. Mater. Chem. A, 2016, 4(6), 2340-2348. https://doi.org/10.1039/C5TA10452A
  35. C. Yang, S. Wang, W. Ma, S. Zhao, Z. Xu, G. Sun, J. Mater. Chem. A, 2016, 4(10), 3886-3892. https://doi.org/10.1039/C6TA00200E
  36. D. Lu, L. Wen, L. Xue, RSC Adv., 2016, 6(75), 71431-71440. https://doi.org/10.1039/C6RA10037F
  37. J. Li, X. Yan, Y. Zhang, B. Zhao, G. He, RSC Adv., 2016, 6(63), 58380-58386. https://doi.org/10.1039/C6RA07241K
  38. P. Papakonstantinou, V. Deimede, RSC Adv., 2016, 6(115), 114329-114343. https://doi.org/10.1039/C6RA24102F
  39. Y. Yang, N. Sun, P. Sun, L. Zheng, RSC Adv., 2016, 6(30), 25311-25318. https://doi.org/10.1039/C6RA02033J
  40. F. Song, Y. Fu, Y. Gao, J. Li, J. Qiao, X.D. Zhou, Y. Liu, Electrochim. Acta, 2015, 177, 137-144. https://doi.org/10.1016/j.electacta.2015.02.015
  41. Y. Gao, F. Song, J. Qiao, S. Chen, X. Zhao, J. Zhang, Electrochim. Acta, 2015, 177, 201-208. https://doi.org/10.1016/j.electacta.2015.01.164
  42. L. Wu, Q. Pan, J.R. Varcoe, D. Zhou, J. Ran, Z. Yang, T. Xu, J. Membr. Sci., 2015, 490, 1-8. https://doi.org/10.1016/j.memsci.2015.04.046
  43. C. Yang, S. Wang, W. Ma, L. Jiang, G. Sun, J. Membr. Sci., 2015, 487, 12-18. https://doi.org/10.1016/j.memsci.2015.03.067
  44. C. Yang, S. Wang, W. Ma, L. Jiang, G. Sun, J. Mater. Chem. A, 2015, 3(16), 8559-8565. https://doi.org/10.1039/C5TA00562K
  45. S.D. Poynton, J.R. Varcoe, Solid State Ionics, 2015, 277, 38-43. https://doi.org/10.1016/j.ssi.2015.04.013
  46. W.-H. Lee, A.D. Mohanty, C. Bae, ACS Macro Lett., 2015, 4(4), 453-457. https://doi.org/10.1021/acsmacrolett.5b00145
  47. J. Fang, Y. Wu, Y. Zhang, M. Lyu, J. Zhao, Int. J. Hydrogen Energy, 2015, 40(36), 12392-12399. https://doi.org/10.1016/j.ijhydene.2015.07.074
  48. S. Chen, Y. Song, F. Song, X. Zhao, J. Qiao, X.-D. Zhou, ECS Trans., 2015, 66(3), 111-116. https://doi.org/10.1149/06603.0111ecst
  49. Z. Li, Z. Jiang, H. Tian, S. Wang, B. Zhang, Y. Cao, G. He, Z. Li, H. Wu, J. Power Sources, 2015, 288, 384-392. https://doi.org/10.1016/j.jpowsour.2015.04.112
  50. L.A. Diaz, J. Hnát, N. Heredia, M.M. Bruno, F.A. Viva, M. Paidar, H.R. Corti, K. Bouzek, G.C. Abuin, J. Power Sources, 2016, 312, 128-136. https://doi.org/10.1016/j.jpowsour.2016.02.032
  51. G. Merle, M. Wessling, K. Nijmeijer, J. Membr. Sci., 2011, 377(1), 1-35. https://doi.org/10.1016/j.memsci.2011.04.043
  52. J. Parrondo, M. George, C. Capuano, K.E. Ayers, V. Ramani, J. Mater. Chem. A, 2015, 3(20), 10819-10828. https://doi.org/10.1039/C5TA01771H
  53. T. Zhan, X. Liu, S. Lu, W. Hou, Appl. Catal., B, 2017, 205, 551-558. https://doi.org/10.1016/j.apcatb.2017.01.010
  54. J. Yang, T. Fujigaya, N. Nakashima, Sci. Rep., 2017, 7, 45384-45392. https://doi.org/10.1038/srep45384
  55. S. Dutta, C. Ray, Y. Negishi, T. Pal, ACS Appl. Mater. Interfaces, 2017, 9, 8134-8141. https://doi.org/10.1021/acsami.7b00030
  56. Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng, S.-H. Yu, Chemical Science, 2017, 8(2), 968-973. https://doi.org/10.1039/C6SC03356C
  57. Y. Jin, X. Yue, C. Shu, S. Huang, P.K. Shen, J. Mater. Chem. A, 2017, 5(6), 2508-2513. https://doi.org/10.1039/C6TA10802D
  58. X. Chen, G. Zeng, T. Gao, Z. Jin, Y. Zhang, H. Yuan, D. Xiao, Electrochem. Commun., 2017, 74, 42-47. https://doi.org/10.1016/j.elecom.2016.09.010
  59. Y. Fang, X. Li, S. Zhao, J. Wu, F. Li, M. Tian, X. Long, J. Jin, J. Ma, RSC Adv., 2016, 6(84), 80613-80620. https://doi.org/10.1039/C6RA15624J
  60. J. Wang, K. Li, H.x. Zhong, D. Xu, Z.l. Wang, Z. Jiang, Z.j. Wu, X.b. Zhang, Angew. Chem. Int. Ed., 2015, 54(36), 10530-10534. https://doi.org/10.1002/anie.201504358
  61. B. Jovic, U. Lacnjevac, V. Jovic, N. Krstajic, J. Electroanal. Chem., 2015, 754, 100-108. https://doi.org/10.1016/j.jelechem.2015.07.013
  62. P. Hosseini-Benhangi, M.A. Garcia-Contreras, A. Alfantazi, E.L. Gyenge, J. Electrochem. Soc., 2015, 162(12), F1356-F1366. https://doi.org/10.1149/2.0561512jes
  63. S.H. Ahn, S.J. Yoo, H.-J. Kim, D. Henkensmeier, S.W. Nam, S.-K. Kim, J.H. Jang, Appl. Catal., B, 2016, 180, 674-679. https://doi.org/10.1016/j.apcatb.2015.07.020
  64. W. Badawy, H. Nady, G.A. El-Hafez, J. Alloys Compd., 2017, 699, 1146-1156. https://doi.org/10.1016/j.jallcom.2016.12.228
  65. R. Solmaz, A. Salci, H. Yuksel, M. Dogrubas, G. Kardas, Int. J. Hydrogen Energy, 2017, 42(4), 2464-2475. https://doi.org/10.1016/j.ijhydene.2016.07.221
  66. P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su, Q. Chen, J. Mater. Chem. A, 2017, 5(11), 5475-5485. https://doi.org/10.1039/C6TA09994G
  67. M. Gao, C. Yang, Q. Zhang, Y. Yu, Y. Hua, Y. Li, P. Dong, Electrochim. Acta, 2016, 215, 609-616. https://doi.org/10.1016/j.electacta.2016.08.145
  68. B. Zhang, H.-H. Wang, H. Su, L.-B. Lv, T.-J. Zhao, J.- M. Ge, X. Wei, K.-X. Wang, X.-H. Li, J.-S. Chen, Nano Res., 2016, 9(9), 2606-2615. https://doi.org/10.1007/s12274-016-1147-1
  69. C. Gonzalez-Buch, I. Herraiz-Cardona, E.M. Ortega, S. Mestre, V. Perez-Herranz, Int. J. Hydrogen Energy, 2016, 41(2), 764-772. https://doi.org/10.1016/j.ijhydene.2015.10.142
  70. R. Kavian, S.-I. Choi, J. Park, T. Liu, H.-C. Peng, N. Lu, J. Wang, M.J. Kim, Y. Xia, S.W. Lee, J. Mater. Chem. A, 2016, 4(32), 12392-12397. https://doi.org/10.1039/C6TA05411K
  71. B. Pierozynski, T. Mikolajczyk, Electrocatalysis, 2016, 7(2), 121-126. https://doi.org/10.1007/s12678-015-0290-x
  72. Y. Liu, G.-D. Li, L. Yuan, L. Ge, H. Ding, D. Wang, X. Zou, Nanoscale, 2015, 7(7), 3130-3136. https://doi.org/10.1039/C4NR06295G
  73. B. Jovic, V. Jovic, U. Lacnjevac, L. Gajic-Krstajic, N. Krstajic, Int. J. Hydrogen Energy, 2015, 40(33), 10480-10490. https://doi.org/10.1016/j.ijhydene.2015.06.127
  74. M. Wang, Z. Wang, X. Yu, Z. Guo, Int. J. Hydrogen Energy, 2015, 40(5), 2173-2181. https://doi.org/10.1016/j.ijhydene.2014.12.022
  75. L. Han, S. Dong, E. Wang, Adv. Mater., 2016, 28, 9266-9291. https://doi.org/10.1002/adma.201602270
  76. B. Bladergroen, H. Su, S. Pasupathi, V. Linkov, Overview of Membrane Electrode Assembly Preparation Methods for Solid Polymer electrolyte Electrolyzer, in: D.J. Kleperis (Ed.) Electrolysis, InTech, 2012.
  77. T. Suzuki, S. Tsushima, S. Hirai, Int. J. Hydrogen Energy, 2011, 36(19), 12361-12369. https://doi.org/10.1016/j.ijhydene.2011.06.090
  78. K.-H. Kim, K.-Y. Lee, H.-J. Kim, E. Cho, S.-Y. Lee, T.- H. Lim, S.P. Yoon, I.C. Hwang, J.H. Jang, Int. J. Hydrogen Energy, 2010, 35(5), 2119-2126. https://doi.org/10.1016/j.ijhydene.2009.11.058
  79. S. Jeon, J. Lee, G.M. Rios, H.-J. Kim, S.-Y. Lee, E. Cho, T.-H. Lim, J. Hyun Jang, Int. J. Hydrogen Energy, 2010, 35(18), 9678-9686. https://doi.org/10.1016/j.ijhydene.2010.06.044
  80. M.K. Cho, H.-Y. Park, S.Y. Lee, B.-S. Lee, H.-J. Kim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, J. Han, H.S. Park, Y.-E. Sung, J.H. Jang, Electrochim. Acta, 2017, 224, 228-234. https://doi.org/10.1016/j.electacta.2016.12.009
  81. D.S. Hwang, C.H. Park, S.C. Yi, Y.M. Lee, Int. J. Hydrogen Energy, 2011, 36(16), 9876-9885. https://doi.org/10.1016/j.ijhydene.2011.05.073
  82. S. Kamarajugadda, S. Mazumder, J. Power Sources, 2008, 183(2), 629-642. https://doi.org/10.1016/j.jpowsour.2008.05.072
  83. Y. Qiu, H. Zhang, H. Zhong, F. Zhang, Int. J. Hydrogen Energy, 2013, 38(14), 5836-5844. https://doi.org/10.1016/j.ijhydene.2013.02.118
  84. M. Yazdanpour, A. Esmaeilifar, S. Rowshanzamir, Int. J. Hydrogen Energy, 2012, 37(15), 11290-11298. https://doi.org/10.1016/j.ijhydene.2012.04.139
  85. A. Therdthianwong, P. Manomayidthikarn, S. Therdthianwong, Energy, 2007, 32(12), 2401-2411. https://doi.org/10.1016/j.energy.2007.07.005
  86. O. Okur, C. İyigun Karadag, F.G. Boyaci San, E. Okumus, G. Behmenyar, Energy, 2013, 57, 574-580. https://doi.org/10.1016/j.energy.2013.05.001
  87. Z.X. Liang, T.S. Zhao, C. Xu, J.B. Xu, Electrochim. Acta, 2007, 53(2), 894-902. https://doi.org/10.1016/j.electacta.2007.07.071
  88. J. Zhang, H. Zhang, J. Wu, J. Zhang, Chapter 3 - Techniques for PEM Fuel Cell Testing and Diagnosis, in: Pem Fuel Cell Testing and Diagnosis, Elsevier, Amsterdam, 2013.
  89. L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang, J. Lu, Energy Environ. Sci., 2012, 5(7), 7869-7871. https://doi.org/10.1039/c2ee22146b
  90. J. Parrondo, C.G. Arges, M. Niedzwiecki, E.B. Anderson, K.E. Ayers, V. Ramani, RSC Adv., 2014, 4(19), 9875-9879. https://doi.org/10.1039/c3ra46630b
  91. J. Parrondo, V. Ramani, J. Electrochem. Soc., 2014, 161(10), F1015-F1020. https://doi.org/10.1149/2.0601410jes
  92. D. Aili, M.K. Hansen, R.F. Renzaho, Q. Li, E. Christensen, J.O. Jensen, N.J. Bjerrum, J. Membr. Sci., 2013, 447, 424-432. https://doi.org/10.1016/j.memsci.2013.07.054
  93. S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, M. Velan, Int. J. Hydrogen Energy, 2013, 38(35), 14934-14942. https://doi.org/10.1016/j.ijhydene.2013.09.033
  94. X. Wu, K. Scott, Int. J. Hydrogen Energy, 2013, 38(8), 3123-3129. https://doi.org/10.1016/j.ijhydene.2012.12.087
  95. X. Wu, K. Scott, J. Power Sources, 2012, 206, 14-19. https://doi.org/10.1016/j.jpowsour.2011.12.052
  96. X. Wu, K. Scott, F. Xie, N. Alford, J. Power Sources, 2014, 246, 225-231. https://doi.org/10.1016/j.jpowsour.2013.07.081
  97. A. Abdelrasoul, H. Doan, A. Lohi, C.-H. Cheng, ChemBioEng Reviews, 2015, 2(1), 22-43. https://doi.org/10.1002/cben.201400030
  98. J. Pan, Y. Li, L. Zhuang, J. Lu, Chemical Communications, 2010, 46(45), 8597-8599. https://doi.org/10.1039/c0cc03618h
  99. Varcoe, John R., et al., Energy Environ. Sci., 2014, 7(10), 3135-3191. https://doi.org/10.1039/C4EE01303D
  100. N.T. Rebeck, Y. Li, D.M. Knauss, Journal of Polymer Science Part B: Polymer Physics, 2013, 51(24), 1770-1778. https://doi.org/10.1002/polb.23245
  101. Z. Wang, J. Parrondo, V. Ramani, J. Electrochem. Soc., 2016, 163(8), F824-F831. https://doi.org/10.1149/2.0551608jes
  102. K.H. Gopi, S.G. Peera, S.D. Bhat, P. Sridhar, S. Pitchumani, Int. J. Hydrogen Energy, 2014, 39(6), 2659-2668. https://doi.org/10.1016/j.ijhydene.2013.12.009
  103. C.G. Arges, L. Wang, J. Parrondo, V. Ramani, J. Electrochem. Soc., 2013, 160(11), F1258-F1274. https://doi.org/10.1149/2.049311jes
  104. Y.S. Li, T.S. Zhao, Int. J. Hydrogen Energy, 2012, 37(5), 4413-4421. https://doi.org/10.1016/j.ijhydene.2011.11.086
  105. X. Wu, K. Scott, J. Power Sources, 2012, 214, 124-129. https://doi.org/10.1016/j.jpowsour.2012.03.069
  106. Y. Furukawa, K. Tadanaga, A. Hayashi, M. Tatsumisago, Solid State Ionics, 2011, 192(1), 185-187. https://doi.org/10.1016/j.ssi.2010.05.032
  107. C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem. Int. Ed., 2014, 53(5), 1378-1381. https://doi.org/10.1002/anie.201308099
  108. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B.R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Catal. Today, 2016, 262, 170-180. https://doi.org/10.1016/j.cattod.2015.08.014
  109. Z. Feng, W.T. Hong, D.D. Fong, Y.-L. Lee, Y. Yacoby, D. Morgan, Y. Shao-Horn, Acc. Chem. Res., 2016, 49(5), 966-973. https://doi.org/10.1021/acs.accounts.5b00555
  110. I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov, T. Vitanov, J. Electroanal. Chem., 1997, 429(1-2), 157-168. https://doi.org/10.1016/S0022-0728(96)05013-9