• Title/Summary/Keyword: ADAS (Advanced Driver Assistance System)

Search Result 69, Processing Time 0.025 seconds

Real-time FCWS implementation using CPU-FPGA architecture (CPU-FPGA 구조를 이용한 실시간 FCWS 구현)

  • Han, Sungwoo;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • Advanced Driver Assistance Systems(ADAS), such as Front Collision Warning System (FCWS) are currently being developed. FCWS require high processing speed because it must operate in real time while driving. In addition, a low-power system is required to operate in an automobile embedded system. In this paper, FCWS is implemented in CPU-FPGA architecture in embedded system to enable real-time processing. The lane detection enabled the use of the Inverse Transform Perspective (IPM) and sliding window methods to operate at fast speed. To detect the vehicle, a Convolutional Neural Network (CNN) with high recognition rate and accelerated by parallel processing in FPGA is used. The proposed architecture was verified using Intel FPGA Cyclone V SoC(System on Chip) with ARM-Core A9 which operates in low power and on-board FPGA. The performance of FCWS in HD resolution is 44FPS, which is real time, and energy efficiency is about 3.33 times higher than that of high performance PC enviroment.

Performance Evaluation of Lane Keeping Assistance System (도로주행환경을 고려한 차선유지지원장치 성능 평가)

  • Woo, Hyungu;Yong, Boojoong;Kim, Kyungjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2014
  • Lane Keeping Assistance System(LKAS) is a kind of Advanced Driver Assistance Systems(ADAS) which are developed to automate/ adapt/ enhance vehicle systems for safety and better driving. The main system function of LKAS is to support the driver in keeping the vehicle within the current lane. LKAS acquires information on the position of the vehicle within the lane and, when required, sends commands to actuators to influence the lateral movement of the vehicle. Recently, the vehicles equipped with LKAS are commercially available in a few vehicle-advanced countries and the installation of LKAS increases for safety enhancement. The test procedures for LKAS evaluations are being discussed and developed in international committees such as ISO(the International Organization for Standardization). In Korea, the evaluations of LKAS for vehicle safety are planned to be introduced in 2016 KNCAP(Korean New Car Assessment Program). Therefore, the test procedures of LKAS suitable for domestic road and traffic conditions, which accommodate international standards, should be developed. In this paper, some bullet points of the test procedures for LKAS are discussed by extensive researches of previous documents and reports, which are released in public in regard to lateral test procedures including LKAS and Lane Departure Warning System(LDWS). Later, it can be helpful to make a draft considering domestic traffic situations for test procedures of LKAS.

The Study on the Development of the Car Driver's Front Attention Enhancement System using the Car Camera (차량카메라 영상을 이용한 운전자 전방 주의력향상 시스템 개발에 관한 연구)

  • Lee, Sang-Ha;Shim, Min Kyung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • In this paper for developing and implementing the car driver's front lane attention enhancement developed system using the car camera. The developed system automatically alarm the car driver when front cars make the dangerous situation. We use Raspberry Pi camera module V2 as car camera module, Raspberry Pi 3 board as hardware main board of implementing embedded system and develop the application library module which can be operated on the Raspberry situation. The application library module widely consist of two part, front car recognition part and dangerous situation distinguish part. Our developed system satisfy the performance test of the target system at the software test certification laboratory of TTA(Telecommunication Technology Association). We test four items as attentive car recognition ability at day and night, system performance, response time. We get the performance of developed system based on the four goal. The car driver's front lane attention enhancement system in this paper will be widely used at the ADAS(Advanced Driving Assistance System) because of the better performance and function.

To prevent unprotected left turn accident A Study on the Improvement of ADAS System (비보호 좌회전 사고 예방을 위한 ADAS 시스템 개선 방안의 관한 연구)

  • Jun-Young Kim;Kyung-Jun Kim;Se-Young Park;Shin-Hyoung Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.940-942
    • /
    • 2023
  • 교통사고 통계에 따르면 비보호 구역 내 도로에서 발생하는 교통사고 발생률이 일반 도로보다 30% 높은 수준임이 밝혀졌다. 기존 첨단 운전자 지원 시스템(ADAS: Advanced Driver Assistance Systems)은 다양한 사고 시나리오가 존재하는 비보호 구역에 적용하기에는 한계가 있다. 본 논문은 이러한 문제에 대응하기 위해 기존 ADAS 기능을 확장하여 예측과 판단이 어려운 비보호 구역에서 AI 분석을 통해 운전자에게 주행 가능 여부를 시각적으로 제공하는 시스템을 개발하고자 한다. 이 시스템은 운전자에게 경고와 지원을 제공함으로써 비보호 구역 내 교통사고를 예방할 수 있다.

Advanced Navigation System using Soft-Computing (소프트 컴퓨팅을 이용한 진보된 네비게이션 시스템)

  • Ju, Yeong-Jin;Choe, U-Gyeong;Kim, Seong-Hyeon;Jun, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.87-90
    • /
    • 2006
  • 생활의 일부라 할 수 있는 교통시스템은 도시화, 산업화가 진행됨에 따라 더욱 복잡해지고 있다. 이를 보완하기 위해 내비게이션, 텔레메틱스 와 같은 다양한 보조 수단이 개발되고 있다. 하지만 이러한 운전자 보조 시스템은 개별화된 특성을 반영하지 않으며, 가장 일반적인 경우에 치중되어 있다. 본 논문에서는 개별화되고 사용자 중심적인 운전자 보조 시스템을 제안하며, 어떠한 정보가 이에 활용될 수 있는지를 고찰해 보았다. 또한 이런 정보를 해결하기 위한 소프트 컴퓨팅 기법을 제안하고자 한다.

  • PDF

Hardware Architecture and Memory Bandwidth Analysis of AVM System (AVM 시스템의 하드웨어 구현에 따른 하드웨어 구조 및 메모리 대역폭 분석)

  • Nam, Kwnag-Min;Jung, Yong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.241-250
    • /
    • 2016
  • AVM(Around View Monitoring) is a function of ADAS(Advanced Driver Assistance Systems), which provides a bird's eye view of the surroundings of a vehicle to the user. AVM systems require large bandwidth since they are composed of four input images and require real-time processing for vehicle-embedded environments. Also, the memory bandwidth requirement increases greatly when the resolution of the input data is higher. In this paper, we propose four basic hardware models of AVM systems. The models are decided by whether or not there is a valid data extraction module and an image processing purpose LUT generation module. We analyze the required bandwidth and hardware resource for each model. For verification of the proposed models, we implemented an AVM system using XC7Z045 FPGA and DDR3 memory for VGA and FHD resolution. All four of the proposed hardware model is executed below 33ms, which shows that it can operate in real-time.

A Study on the V2V Safety Evaluation Method of AEB (AEB의 V2V 안전성 평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • There are trying to reduce damage from automobile accident in many countries. In many automobile companies, there have been active study on development of ADAS (Advanced Driver Assistance Systems) for commercialization, in order to reduce damage from automobile accident. ADAS is the system providing convenience and safeness for drivers. Generally, ADAS is composed of ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). AEB of the ADAS, it is an autonomous emergency braking system and it senses potential collide and avoids or degrades it. Therefore AEB plays a significant role in reducing automobile accident rate. However, AEB safety evaluation method is not established not yet. For this reason, this study suggests safety evaluation scenarios with adding cut-in, sensor malfunctioning scenario that scenario domestic street conditions considered as well as original standard AEB scenario of Euro NCAP for establishment of safety evaluation method of AEB. And verifying validity of suggested scenario by comparing the calculated values of the theoretical formulas presented in the previous study with results of the actual vehicle test.

A Study on Mode Confusions in Adaptive Cruise Control Systems (적응 순항 제어 시스템에서의 모드 혼동에 관한 연구)

  • Ahn, Dae Ryong;Yang, Ji Hyun;Lee, Sang Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.473-482
    • /
    • 2015
  • Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions.

A Study on ADAS utilization in Mobility Services (모빌리티 서비스에서 ADAS 활용성에 대한 연구)

  • Lee, Dong-Yub;Kim, Soo-Hyun;Han, Hye-Rim;Kim, Myoung-Ju;Kim, Shin-Hyoung
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.845-847
    • /
    • 2022
  • 교통사고의 원인 중 90%는 졸음운전과 같은 운전자의 부주의 때문에 발생하고 있다. 정부에서도 사고로 인한 인명피해 심각성을 인지하고 2019년부터 전방충돌방지 시스템과 차선이탈 경고 장치 등 ADAS(Advanced Driver Assistance Systems)를 의무적으로 적용하도록 규제를 강화하는 추세이다. 충돌사고를 예방하기 위해 본 논문에서는 영상처리를 기반으로 하여 객체 검출, 차간거리 측정, 후미등 검출, 차선 검출 기능을 적용하여 위험한 상황을 감지하고 운전자에게 경고 알림을 제공하는 System을 개발한다. 더 나아가 다양한 모빌리티 서비스에 이를 활용할 수 있는 방안을 제공한다.

The Analysis of Bus Traffic Accident to Support Safe Driving for Bus Drivers (버스운전자 안전운행지원을 위한 교통사고 분석 연구)

  • BHIN, Miyoung;SON, Seulki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.14-26
    • /
    • 2019
  • For bus drivers' safe driving, a policy that analyzes the causes of the drivers' traffic accidents and then assists their safe driving is required. Therefore, the Ministry of Land, Infrastructure and Transport set up its plan to gradually expand the equipping of commercial vehicles with FCWS (Forward Collision Warning System) and LDWS(Lane Departure Warning System), from the driver-supporting ADAS(Advanced Driver Assistance Systems). However, there is not much basic research on the analysis of bus drivers' traffic accidents in Korea. As such, the time is appropriate to research what is the most necessary ADAS for bus drivers going forward to prevent bus accidents. The purpose of this research is to analyze how serious the accidents were in the different bus routes and whether the accidents were repetitive, and to give recommendations on how to support ADAS for buses, as an improvement. A model of ordered logit was used to analyze how serious the accidents were and as a result, vehicle to pedestrian accidents which directly affected individuals were statistically significant in all of the models, and violations of regulations, such as speeding, traffic signal violation and violation of safeguards for passengers, were indicated in common in several models. Therefore, the pedestrian-sensor system and automatic emergency control device for pedestrian should be installed to reduce bus accidents directly affecting persons in the future, and education for drivers and ADAS are to be offered to reduce the violations of regulations.