• 제목/요약/키워드: ACCELERATION

검색결과 7,249건 처리시간 0.028초

스마트폰 가속도 센서의 K-평균 클러스터링을 이용한 사람행동 자동분석 방법에 대한 연구 (A Study on Automatic Analysis Method of Human Behavior Using K-Mean Clustering of Smartphone Acceleration Sensor)

  • 박종권;송특섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.486-487
    • /
    • 2019
  • 스마트폰에는 다양한 센서가 내장되어 있다. 특히 가속도 센서는 물체의 움직임을 파악할 수 있기 때문에 사람의 행동을 분석하는데 많이 사용된다. 기존의 연구들은 가속도센서의 값의 크기를 분석하여 사람의 행동을 분석하였다. 본 연구에서는 스마트폰에 내장된 가속도 센서의 값을 K-평균을 적용하여 움직임을 파악하는 방법을 제안하였다. 스마트폰의 가속도센서의 값을 K-평균을 적용하여 사람의 기본적인 행동인 걷기와 달리기를 인식하기 방법을 제안하였다.

  • PDF

Racing Car ECU 의 제어에 의한 가속성능 향상에 관한 연구 (Electronic Control Unit Based Control of Racing Car to Enhance the Acceleration Performance)

  • 황의준;허장욱
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.58-63
    • /
    • 2020
  • The fuel injection amount and timing along with the ignition timing for the gasoline engine of a racing car were adjusted using an electronic control unit (ECU), and the engine performance was evaluated through an acceleration test. The fuel map for the fuel injection amount and ignition map for the ignition timing were derived. Using the transient throttle control, the air-fuel ratio could be maintained at a constant value even in the case of a sudden throttle operation. In the flat shift, ignition blocking was more effective than fuel blocking. In a 75 m acceleration test, the required duration without and with ECU control was 4.47 s and 3.99 s, respectively. Notably, the acceleration could be improved by approximately 10.7% when the ECU control was implemented.

KINEMATIC CLASSIFICATION OF CORONAL MASS EJECTIONS IN LASCO C3 FIELD OF VIEW

  • Jeon, Seong-Gyeong;Moon, Yong-Jae;Cho, Il-Hyun;Lee, Harim;Yi, Kangwoo
    • 천문학회지
    • /
    • 제55권3호
    • /
    • pp.67-74
    • /
    • 2022
  • In this study, we perform a statistical investigation of the kinematic classification of 4,264 coronal mass ejections (CMEs) from 1996 to 2015 observed by SOHO/LASCO C3. Using the constant acceleration model, we classify these CMEs into three groups: deceleration, constant velocity, and acceleration motion. For this, we devise three different classification methods using fractional speed variation, height contribution, and visual inspection. The main results of this study can be summarized as follows. First, the fractions of three groups depend on the method used. Second, about half of the events belong to the groups of acceleration and deceleration. Third, the fractions of three motion groups as a function of CME speed are consistent with one another. Fourth, the fraction of acceleration motion decreases as CME speed increases, while the fractions of other motions increase with speed. In addition, the acceleration motions are dominant in low speed CMEs whereas the constant velocity motions are dominant in high speed CMEs.

둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석 (Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed)

  • 이혁;김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

A data fusion method for bridge displacement reconstruction based on LSTM networks

  • Duan, Da-You;Wang, Zuo-Cai;Sun, Xiao-Tong;Xin, Yu
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.599-616
    • /
    • 2022
  • Bridge displacement contains vital information for bridge condition and performance. Due to the limits of direct displacement measurement methods, the indirect displacement reconstruction methods based on the strain or acceleration data are also developed in engineering applications. There are still some deficiencies of the displacement reconstruction methods based on strain or acceleration in practice. This paper proposed a novel method based on long short-term memory (LSTM) networks to reconstruct the bridge dynamic displacements with the strain and acceleration data source. The LSTM networks with three hidden layers are utilized to map the relationships between the measured responses and the bridge displacement. To achieve the data fusion, the input strain and acceleration data need to be preprocessed by normalization and then the corresponding dynamic displacement responses can be reconstructed by the LSTM networks. In the numerical simulation, the errors of the displacement reconstruction are below 9% for different load cases, and the proposed method is robust when the input strain and acceleration data contains additive noise. The hyper-parameter effect is analyzed and the displacement reconstruction accuracies of different machine learning methods are compared. For experimental verification, the errors are below 6% for the simply supported beam and continuous beam cases. Both the numerical and experimental results indicate that the proposed data fusion method can accurately reconstruct the displacement.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성 (Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration)

  • 안태윤;라정민;박준형;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

Prediction of dynamic behavior of full-scale slope based on the reduced scale 1 g shaking table test

  • Jin, Yong;Kim, Daehyeon;Jeong, Sugeun;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2022
  • The objective of the study is to evaluate the feasibility of the dynamic behavior of slope through both 1 g shaking table test and numerical analysis. Accelerometers were installed in the slope model with different types of seismic waves. The numerical analysis (ABAQUS and DEEPSOIL) was used to simulate 1 g shaking table test at infinite boundary. Similar Acceleration-time history, Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) were obtained, which verified the feasibility of modeling using ABAQUS and DEEPSOIL under the same size. The influence of the size (1, 2, 5, 10 and 20 times larger than that used in the 1 g shaking table test) of the model used in the numerical analysis were extensively investigated. According to the similitude law, ABAQUS was used to analyze the dynamic behavior of large-scale slope model. The 5% Damping Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) at the same proportional positions were compared. Based on the comparison of numerical analyses and 1 g shaking table tests, it was found that the 1 g shaking table test result can be utilized to predict the dynamic behavior of the real scale slope through numerical analysis.

Field Test of Automated Activity Classification Using Acceleration Signals from a Wristband

  • Gong, Yue;Seo, JoonOh
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.443-452
    • /
    • 2020
  • Worker's awkward postures and unreasonable physical load can be corrected by monitoring construction activities, thereby increasing the safety and productivity of construction workers and projects. However, manual identification is time-consuming and contains high human variance. In this regard, an automated activity recognition system based on inertial measurement unit can help in rapidly and precisely collecting motion data. With the acceleration data, the machine learning algorithm will be used to train classifiers for automatically categorizing activities. However, input acceleration data are extracted either from designed experiments or simple construction work in previous studies. Thus, collected data series are discontinuous and activity categories are insufficient for real construction circumstances. This study aims to collect acceleration data during long-term continuous work in a construction project and validate the feasibility of activity recognition algorithm with the continuous motion data. The data collection covers two different workers performing formwork at the same site. An accelerator, as well as portable camera, is attached to the worker during the entire working session for simultaneously recording motion data and working activity. The supervised machine learning-based models are trained to classify activity in hierarchical levels, which reaches a 96.9% testing accuracy of recognizing rest and work and 85.6% testing accuracy of identifying stationary, traveling, and rebar installation actions.

  • PDF