• 제목/요약/키워드: AC breakdown

검색결과 377건 처리시간 0.028초

평등, 불평등 전계에서 AC전압의 $SF_6/CF_4$ 혼합가스 절연내력 특성 (Breakdown Characteristics of $SF_6/CF_4$ Mixtures under AC Voltages in Uniform, Nonuniform Field)

  • 성허경;황청호;김남렬;허창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1334-1335
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in uniform and nonuniform field was performed. The experiments were carried out under AC voltages. The sphere-sphere electrode whose gap distance was 1 mm was used and the point-plane electrode whose gap distance was 3 mm was used in a test chamber. $SF_6/CF_4$ mixture contained 20% $SF_6$ and 80% $CF_4$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The results show that addition of $SF_6/CF_4$ mixtures increase AC breakdown voltages. In uniform field the breakdown voltages of gas were linearly increased according to the pressure. However in nonuniform field the breakdown voltages of gas were increased nonlinearly.

  • PDF

인버터 서지와 온도스트레스 하에서 PAI/Nano Silica 에나멜와이어의 가속절연수명 평가 (Accelerated Insulation Life Estimation for PAI/Nano Silica Enamelled Wire under Inverter Surge and Temperature Stress)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1712-1720
    • /
    • 2016
  • AC and DC insulation breakdown voltage was studied for magnet wire coated with double layers of high flexural PAI layer and high anti-corona PAI/nanosilica (15 wt%) layer. The specimens were prepared at various drying temperatures (T/D): $22^{\circ}C$, $240^{\circ}C$, and $260^{\circ}C$, respectively. The increase effects of nanosilica on AC and DC insulation breakdown voltage were not so significant compared to that of magnet wire coil coated with original PAI. And the AC and DC insulation breakdown voltage was improved by decreasing diameter of winding coil. As T/D temperature increased, AC and DC insulation breakdown voltage decreased.

배전용 몰드변압기 적용을 위한 EMNC의 교류절연파괴특성 연구 (AC Insulation Breakdown Properties of the EMNC to Application of Distribution Molded Transformer)

  • 박재준
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.649-656
    • /
    • 2013
  • A conventional epoxy-microsilica composite (EMC) and an epoxy-microsilica-nanosilicate composite (EMNC) were prepared in order to apply them to mold-type transformers, current transformers (CT) and potential transformers (PT). Nanosilicate was exfoliated in a epoxy resin using our electric field dispersion process and AC insulation breakdown strength at $30{\sim}150^{\circ}C$, glass transition temperature and viscoelasticity were studied. AC insulation breakdown strength of EMNC was higher than that of EMC and that value of EMNC was far higher at high temperature. Glass transition temperature and viscoelasticity property of EMNC was higher than those of EMC at high temperature. These results was due to the even dispersion of nanosilicates among the nanosilicas, which could be observed using transmission electron microscopy (TEM). That is, the nanosilicates interrupt the electron transfer and restrict the mobility of the epoxy chains.

염분에 따른 변압기유의 AC 철연파괴에 미치는 영향 (The Effect on AC Breakdown of Transformer Oils due to Sodium Chloride)

  • 이용우;신종열;송병기;김석환;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.273-275
    • /
    • 1996
  • In order to investigate the electrical properties of naphthanic transformer oils for insulating and cooling, the characteristics for breakdown in temperature range of $20{\sim}100[^{\circ}C]$, that of AC breakdown in 1.0[mm] of gap length were made researches. As a result the characteristics for AC breakdown, it is confirm that the dielectric strength was increased to 6[ppm], 9[ppm] but decreased to 3[ppm].

  • PDF

Correlation between Insulation Diagnostic Test and AC Breakdown Test for 3.3 kV Class Induction Motor

  • Byun, Doo-Gyoon;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권5호
    • /
    • pp.262-266
    • /
    • 2006
  • The insulation diagnostic test and the AC breakdown test were performed under off-line using the 3.3 kV class induction motor which have been served for 10 years. These tests were conducted in means of nondestructive and destructive test. In this paper, we compared the correlation between the nondestructive and destructive test. Furthermore we setup an experimental condition with moisture and compared the insulation characteristics between moist and dry sample. From the results of the nondestructive and destructive test, it was found that the second AC current, which is the previous step of insulation breakdown, suddenly increased at a point of around 8.5 kV. The insulation breakdown of moist sample occurred at 12-14 kV, which is 4-5 kV lower than dry sample.

AC Breakdown Property of Nano-$TiO_2$ and Micro-Silica filler Mixture of Epoxy Based Composites

  • Heo, J.;Jung, E.H.;Lim, K.J.;Kang, S.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.150-150
    • /
    • 2009
  • In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown properties of nano-$TiO_2$ and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulating materials. AC breakdown test was performed at room temperature $(25^{\circ}C)$, $80^{\circ}C$ and $100^{\circ}C$. The result shows breakdown strength about non-filled, nano-scale $TiO_2$, micro-scale silica and nano-$TiO_2$, micro-silica filled epoxy composites.

  • PDF

AC 플라즈마 디스플레이패널의 방전개시전압에 모델과 실험의 비교에 관한 연구 (Comparision Study Between Modeling and Experiment of the Breakdown Voltage for AC Plasma Display Panel)

  • 박장식
    • 한국전기전자재료학회논문지
    • /
    • 제13권12호
    • /
    • pp.1039-1044
    • /
    • 2000
  • Breakdown voltage model and expertiments are compared for discharge cells of AC plasma display panel. In the model, discharge paths are assumed to be initial electric field lines and the one-dimensional continuity equation is applied to the charged particle transport at each field line. The comparisons are performed in the wide range of gas pressure (50-600torr), Xe partial pressure over total pressure (1-6%), sustain electrode gap(100-1000$\mu\textrm{m}$), wall height(130, 300$\mu\textrm{m}$), and voltage pulse width(2-6${\mu}$s). The presented breakdown voltage model well agree with experiments in the above wide range. The increase of breakdown voltage with the decrease of the width(L) of protruding electrode is also described by the model.

  • PDF

나노 실리카 충진함량 변화에 따른 EMNC의 특성 연구 (2) -기계적, 전기적 특성 중심으로- (Properties of EMNC According to Addition Contents Variation for Nanosilica (2) -For Mechanical, Electrical Properties)

  • 박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.886-894
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy-nanosilica-microsilica mixture composites (ENMC) was synthesized, and mechanical properties such as their tensile and flexural strength, and AC insulation breakdown strength were investigated. Properties of mechanical strength and AC insulation breakdown strength are analyzed as scale and shape parameter with respect to weibull plot. Their tensile and flexural strength, AC insulation breakdown strength were compared original epoxy or EMC to ENMC. The 4 phr nano-silica addition and the 65 wt% micron-silica mixture composite (ENMC) was found to have the highest tensile and flexural strength. In the tensile strength was improved 29%, and flexural strength was improved 60.9% higher than those of the original epoxy. In the insulation breakdown strength, ENMC_4 phr was improved 17% and ENMC_5 phr was improved 15.8% higher than those of the EMC.

불평등 전계에서 $SF_6/N_2$의 초고압 AC전압 절연내력 시뮬레이션

  • 허창수;이병택;최순호;심명섭;안정식;황청호;장용무
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.37-37
    • /
    • 2010
  • In these days $SF_6$ mixtures and alternative gas has been studied because of global warming. so although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/N_2$ mixtures. In this paper, breakdown experiment values and breakdown simulation value are compared. Streamer theory was used for predicting breakdown voltage. For accurate simulation, this simulation apply utilization factor using CST program. AC breakdown experiments in non-uniform field was performed to compare with the breakdown simulation values. But with gap lengths increasing, the breakdown voltage is saturated. So simulation need surface roughness factor.

  • PDF

도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연 파괴 특성에 관한 연구 (A Study on the AC Interfacial Breakdown Properities of the Interface between Epoxy/EPDM with the variation of spreaded oil)

  • 배덕권;이수길;정일형;이준웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.897-899
    • /
    • 1999
  • In this paper, the interfacial dielectric breakdown phenomenon of interface between Epoxy/EPDM (ethylene propylene diene terpolymer) was discussed, which affects stability of insulation system of power delivery devices. Specimen structure was designed by using MAGSOFT's FLUX2D based on the finite elements method. Design concepts is to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the Epoxy/EPDM interface. AC interfacial breakdown phenomenon of was investigated by variation of interfacial conditions oil and temperature which are supposed to have influence on the interfacial breakdown strength. Interfacial breakdown strength was improved by spreading oil over interfacial surface. The decreasing ratio of the AC interfacial breakdown strength in non-oiled specimens was increased by the temperature rising and its of oiled specimens was not affected by temperature.

  • PDF