• Title/Summary/Keyword: AC Power Source

Search Result 524, Processing Time 0.026 seconds

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Three Phase Embedded Z-Source Inverter (3상 임베디드 Z-소스 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.

Electric Energy Saving System for Lighting with Power Conditioning (전력품질개선 기능을 갖는 조명 에너지 절약 시스템)

  • Kwon, H.D.;Park, C.S.;Jo, S.P.;Ko, S.H.;Lee, S.W.;Lee, S.R.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.151-153
    • /
    • 2008
  • This paper deals with the electric energy saving system for lighting with power conditioning, which aims at the integration of power quality improvement and energy saving. The system consists of a CCVSI(Current-Controlled Voltage Source Inverter) and VCVSI(Voltage-Controlled Voltage Source Inverter). The CCVSI is connected in parallel to a grid, which can be operated to compensate the reactive power demanded by nonlinear and variation loads. The VCVSI is connected to the CCVSI through the DC capacitor (DC side) and in series on the AC side(lighting load), which can perform the energy saving. The operation of the proposed system is confirmed through the simulation and its usefulness is discussed.

  • PDF

Modified RCC MPPT Method for Single-stage Single-phase Grid-connected PV Inverters

  • Boonmee, Chaiyant;Kumsuwan, Yuttana
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1338-1348
    • /
    • 2017
  • In this study, a modified ripple correlation control (RCC) maximum-power point-tracking (MPPT) algorithm is proposed for a single-stage single-phase voltage source inverter (VSI) on a grid-connected photovoltaic system (GCPVS). Unlike classic RCC methods, the proposed algorithm does not require high-pass and low-pass filters or the increment of the AC component filter function in the voltage control loop. A simple arithmetic mean function is used to calculate the average value of the photovoltaic (PV) voltage, PV power, and PV voltage ripples for the MPPT of the RCC method. Furthermore, a high-accuracy and high-precision MPPT is achieved. The performance of the proposed algorithm for the single-stage single-phase VSI GCPVS is investigated through simulation and experimental results.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Optimal Inductance of Three-phase High-Power Factor Converter (3상 고역률 AC/DC 컨버터의 부하에 따른 최적 인덕터값)

  • Chun, J.H.;Kim, C.S.;Bark, J.M.;Lee, S.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.246-249
    • /
    • 1995
  • This paper proposed a partial resonant swtiching three-phase high power factor converter using a lossless snubber. The proposed converter has a merit of simple controlled circuit because tile input current control discontinuously. And it is improve to input power factor that the snubber capacitor's energy regenerate to the AC source side. This topology is reduced a current/voltage stresses of resonant devices in addition to a partial resonant strategy. The result of simulations with the proposed topology included in this paper.

  • PDF

Single Soft-Switching Multi-Level Energy Recovery Circuit Driver for Plasma Display Panel (플라즈마 디스플레이 채널을 위한 단일 소프트-스위칭 다단계 에너지 회수 회로 드라이버)

  • Jacobo Aguillon-Garcia;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.413-416
    • /
    • 2006
  • The power source of an AC-PDP fur sustainer circuit is operated in high-voltage and high frequency switching during the process required to achieve the gas discharge current to generate light in a PDP panel. Since PDP has the characteristics of a pure capacitive load, the displacement current that occurs during charge and discharge generates considerable reactive power. An auxiliary circuitry called Energy Recovery Circuit (ERC) reduces the capacitive displacement current. However, this auxiliary topology also bears high stress in its components. In this paper, a multilevel voltage wave shaping sustainer circuit with auxiliary ERC characteristics for an AC-PDP driver is proposed. A comparative analysis and experimental results are presented.

  • PDF

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.

The Design of Power Module for Aging Voltage-tolerance test in AC PDP (AC PDP의 Aging 내전압시험용 전원모듈 설계)

  • Kim Dongsik;Kim Kyoungman;Park Changab;Chun Taewon
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.600-603
    • /
    • 2001
  • The method of supplying a single voltage source to a drive has a weak point that we can not determine whether discharging cells of a upper panel in a PDP(Plasma display panel) operate properly or not in the step of testing a durable voltage. From this paper, we can make more reliable products by the design-method of a power-module, for testing a durable voltage, that can determine if discharging cells in a upper pannel in a PDP have something wrong in variously supplied voltage sources.

  • PDF

Low-Cost Single-Phase to Three-Phase PWM Converters for Induction Motor Drives (유도전동기 구동을 위한 저가형 단상-3상 AC/DC/AC PWM 컨버터)

  • Kim Tae-Yun;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, a single-phase to three-phase PWM converter topology using six switches only for low cost induction motor drive is proposed. The converter topology is of lower cost than the conventional one, which gives sinusoidal input current, unity power factor, dc output voltage control and bidirectional power flow In addition, the source voltage sensor is eliminated by controlling the deviation between the model current and the system current to be zero. The performance of the proposed converter has been demonstrated through the computer simulation.

  • PDF