• Title/Summary/Keyword: AC Measurement Standard

Search Result 43, Processing Time 0.027 seconds

Measurement Range Extension of AC High Voltage using two 200 kV Capacitive Dividers (200 kV 용량형 분압기 2대를 이용한 교류 고전압 측정범위 확장)

  • Jung, Jae-Kap;Lee, Sang-Hwa;Kang, Jeon-Hong;Kim, Myung-Soo;Kim, Yoon-Hyoung;Han, Sang-Gil;Jeong, Jin-Hye;Han, Sang-Ok;Joung, Jong-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The output voltage value of AC high voltage source has been usually obtained by multiplying low voltage value measured at both terminals of low voltage resistor by the dividing ratio of the high voltage capacitive divider. From the dividing ratio determined of each 200 kV capacitive divider, we have developed step-up method for measuring the output voltage up to 400 kV using two same type of 200 kV capacitive dividers connected in series. The theoretical dividing ratio of 400 kV capacitive dividers connected in series coincides with that of manufacturer's certification within measurement uncertainty. Thus, this developed step-up method makes it possible to extend the range of output voltage from 200 kV to 400 kV. Furthermore, The dividing ratio of divider under test obtained using this step-up method is consistent with that obtained using one 200 kV high voltage divider within corresponding uncertainties.

Fracture Toughness and Slinding Wear Properties of ABOw/AC4CH by Binder Additives (ABOw/AC4CH의 바인더 종류에 따른 파괴인성 및 미끄럼마모 특성)

  • Park, Won-Jo;Jung, Jae-Wook;Choi, Yong-Bum;Lee, Kwung-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.373-378
    • /
    • 2002
  • Metal matrix composites have a great interest in recent years because high specific strength, high specific stiffness characteristics, and application ranges of the composites are extend to variety industry. In this paper, an investigation was performed on the plane strain fracture toughness and slinding wear properties of AC4CH alloy(Al-Si-Mg line) reinforced with 20wt% aluminum borate whisker expect one, which contained a inorganic binder($TiO_2$). the binder led to the formation of strengthen the whisker each other. The test of fracture toughness was using CT(half size) specimen of thickness 12.5mm, width 25mm. and test of slinding wear of using tribo a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature. As results, Fracture toughness $K_{IC}$ is $8.7MPa-m^{05}$ for ABOw/AC4CH, $9.28MPa-m^{05}$ for ABOw/AC4CH added $TiO_2$. but AC4CH alloy was violated the critical stipulated by ASTM standard for valid measurement of $K_{IC}$. In case of, it was performed $J_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820.

  • PDF

A Study on stylistic measurement of Chogori with Museum specimens (유물실측을 통한 여자저고리의 치수연구)

  • 유송옥
    • Journal of the Korean Society of Costume
    • /
    • v.32
    • /
    • pp.21-30
    • /
    • 1997
  • Chogori the basic upper garment of korea costume occupies an important role in tra-ditional dressing and continues to be in use to the present days. Of course there has been changes in the length and line of Chogori with the flow of time based on the Ancient Yoo. This is a study of the 14 parts of Chgori based on statistical analysis by computing the practical measuements. Here the statistical analysis is a objective and quantitative of the stylistic changes in Chogori with time. In this study from the data the Mean and Standard deviation has been evaluated and periodic change is shown by graph to test the periodic change T-test Regressional analysis Index analysis has been used. The results are as follows: 1. The length of clothing has changed with time except the sleeve length. Here the length of clothing means all the other measurements ex-cept the sleeve Thus while the measurements of sleeve length has been uniquely unchanged the other measurements have influenced each other. 2. Generally the form of Chogori had the tendency towards smallness in the 19th cen-tury. But it tended to get larger in the 20th century. 3. Compared to other periods the mode of 19th and 20th century Chogori was widely ac-cepted as the Standard deviation of that period was very narrow. 4. The results seen from the regressional analysis of the Cho-sun period woman's Chogori satisfy the t-value and R-squared and thus support the regression formula presump-tion. 5. From the index analysis it is revealed that with decrease in the armhole measurement sleeve measurement and neckband; relatively same decrease in the wrist measurement; and very marked decrease in the sideline measurement.

  • PDF

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.

Power Monitoring System with Multiple Input Channels Using the Definition of IEEE Standard 1459-2010 (IEEE 1459-2010 규격의 정의를 이용한 다중 입력 채널을 갖는 전력 감시 시스템)

  • Jeon, Jeong-Chay;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3100-3106
    • /
    • 2014
  • This paper develops power measurement system with multiple sensor input channels (voltage-8 channels and current-10 channels) that simultaneously can monitor power components for both supply and load side of power system. The hardware implementation of the proposed system is based on TMS320C42 DSP and signal processing program algorithm to calculate power components use the definition of IEEE Standard 1459-2010 related power quality. The performance of the developed system is tested by using standard ac power source device, and the test results showed that accuracy of the developed system is less than 0.2 %. Also, field test of the proposed system in the three-phase and four-wire power system was implemented. Simultaneous multiple channel measurement and analysis of power components in commercial and industrial electrical power system using the proposed system will be necessary to reduce power quality problems.

A Study on Fracture Toughness of Metal Matrix Composites Reinforced with $Al_{18}B_4O_{33}$ ($Al_{18}B_4O_{33}$휘스커 강화 금속기 복합재료의 파괴인성에 관한 연구)

  • Park, Sung-Ho;Choi, Yong-Bum;Park, Won-Jo;Huh, Sung-Chul;Yun, Han-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.335-340
    • /
    • 2002
  • In recent years, the study of metal matrix composite has increased specially, aluminum alloy, research and development are briskly progress to find new metal matrix composite. this study is following the this purpose; This study is used metal matrix composite that was produced by matrix, AC4CH. and reinforcement $A_{18}B_4O_{33}$ metal matrix composite to add $Al_2O_3,\;TiO_2$ for strengthen of binding together among the Whisker. Each Metal matrix composite is produced using the squeeze casting method. Fracture tounghness test was in accordance with the provisions of ASTM E399; Specimen was produced half-size CT specimen W=25mm, B=12.5mm, Cross head speed 0.05mm/min in room temperature. The plane strain fracture toughness $K_{IC}$ is $8.7MPa-m^{0.5}$ for $Al_{18}B_4O_{33}$/AC4CH., $9.28MPa-m^{0.5}$ for $Al_{18}B_4O_{33}$/AC4CH added $TiO_2$. and $Al_2O_3$ but AC4CH alloy was violated the critical stipulated by ASTM standard for a valid measurement of $K_{IC}$. In case of, it was performed $I_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820

  • PDF

Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway (도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues (비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발)

  • WooCheol Choi;Tae-Hoon Jeon;Jung-Ho Song;KwangPyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.

Electrical Power and Energy Reference Measurement System with Asynchronous Sampling (비동기 샘플링에 의한 전력과 에너지 측정 기준시스템)

  • Wijesinghe, W.M.S.;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.684_685
    • /
    • 2009
  • A digital sampling algorithm that uses a two high resolution integrating Voltmeters which are synchronized by Phase Lock Loop (PLL) time clock for accurately measuring the parameters, active and reactive power, for sinusoidal power measurements is presented. The PLL technique provides high precision measurements, root mean square (rms), phase and complex voltage ratio, of the AC signal. The system has been designed to be used at the Korean Research Institute of Standards and Science (KRISS) as a reference power standard for electrical power calibrations. The test results have shown that the accuracy of the measurements is better than $10 {\mu}W/VA$ and the level of uncertainty is valid for the power factor range zero to 1 for both lead and lag conditions. The system is fully automated and allows power measurements and calibration of high precision wattmeters and power calibrators at the main power frequencies 50 and 60 Hz.

  • PDF

Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load (과전류 부하에서 5상 농형 유도전동기의 정수 특성)

  • Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.