• Title/Summary/Keyword: ABF1

Search Result 25, Processing Time 0.024 seconds

Structure-Function Analysis of DNA Binding Domain of the Yeast ABF1 Protein (효모 ABF1 단백질의 DNA Binding 부위에 대한 구조 기능 연구)

  • Cho, Gi-Nam;Lee, Sang-Kyung;Kim, Hong-Tae;Kim, Ji-Young;Rho, Hyune-Mo;Jung, Gu-Hung
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.102-108
    • /
    • 1994
  • Autonomously replicating sequence Binding Factor 1(ABF1) is a DNA-binding protein that specifically recognizes the $RTCRYN_5ACG$ at many sites in the yeast genome including the promoter element, mating-type silencer and ARS. To express the intact full-length ABF1 gene in E. coli, the ABF1 gene has been cloned into pMAL-c2 and His-61, Leu-353 and Leu-360 were substituted with other amino acid. ABF1 fusion proteins of wild type ABF1 and H61A, L353R and L360R nutants were purified by amylose resin affinity chromatography. Fusion protein of MBP and ABF1 was digested by Factor Xa and Characterized by gel retardation assay and complementation test. As aresult, we suggested that other DNA binding motif except atypical inc-finger motif is in the middle region of ABF1.

  • PDF

Cloning, Expression, and Characterization of a Thermostable GH51 ${\alpha}-\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22

  • Lee, Sun Hwa;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.236-244
    • /
    • 2014
  • The gene encoding ${\alpha}-\small{L}$-arabinofuranosidase (AFase) from Paenibacillus sp. DG-22 was cloned, sequenced, and expressed in Escherichia coli. The AFase gene (abfA) comprises a 1,509 bp open reading frame encoding 502 amino acids with a molecular mass of 56,520 daltons. The deduced amino acid sequence of the gene shows that AbfA is an enzyme consisting of only a catalytic domain, and that the enzyme has significant similarity to AFases classified into the family 51 of the glycosyl hydrolases. abfA was subcloned into the pQE60 expression vector to fuse it with a six-histidine tag and the recombinant AFase (rAbfA) was purified to homogeneity. The specific activity of the recombinant enzyme was 96.7 U/mg protein. Determination of the apparent molecular mass by gel-filtration chromatography indicated that AbfA has a tetrameric structure. The optimal pH and temperature of the enzyme were 6.0 and $60^{\circ}C$, respectively. The enzyme activity was completely inhibited by 1 mM $HgCl_2$. rAbfA was active only towards p-nitrophephenyl ${\alpha}-\small{L}$-arabinofuranoside and exhibited $K_m$ and $V_{max}$ values of 3.5 mM and 306.1 U/mg, respectively. rAbfA showed a synergistic effect in combination with endoxylanase on the degradation of oat spelt xylan and wheat arabinoxylan.

Hydrolysis of Arabinoxylo-oligosaccharides by α-ʟ-Arabinofuranosidases and β-ᴅ-Xylosidase from Bifidobacterium dentium

  • Lee, Min-Jae;Kang, Yewon;Son, Byung Sam;Kim, Min-Jeong;Park, Tae Hyeon;Park, Damee;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.187-194
    • /
    • 2022
  • Two α-ʟ-arabinofuranosidases (BfdABF1 and BfdABF3) and a β-ᴅ-xylosidase (BfdXYL2) genes were cloned from Bifidobacterium dentium ATCC 27679, and functionally expressed in E. coli BL21(DE3). BfdABF1 showed the highest activity in 50 mM sodium acetate buffer at pH 5.0 and 25℃. This exo-enzyme could hydrolyze p-nitrophenyl arabinofuranoside, arabino-oligosaccharides (AOS), arabinoxylo-oligosaccharides (AXOS) such as 32-α-ʟ-arabinofuranosyl-xylobiose (A3X), and 23-α-ʟ-arabinofuranosyl-xylotriose (A2XX), whereas hardly hydrolyzed polymeric substrates such as debranched arabinan and arabinoxylans. BfdABF1 is a typical exo-ABF with the higher specific activity on the oligomeric substrates than the polymers. It prefers to α-(1,2)-ʟ-arabinofuranosidic linkages compared to α-(1,3)-linkages. Especially, BfdABF1 could slowly hydrolyze 23,33-di-α-ʟ-arabinofuranosyl-xylotriose (A2+3XX). Meanwhile, BfdABF3 showed the highest activity in sodium acetate at pH 6.0 and 50℃, and it has the exclusively high activities on AXOS such as A3X and A2XX. BfdABF3 mainly catalyzes the removal of ʟ-arabinose side chains from various AXOS. BfdXYL2 exhibited the highest activity in sodium citrate at pH 5.0 and 55℃, and it specifically hydrolyzed p-nitrophenyl xylopyranoside and xylo-oligosaccharides (XOS). Also, BfdXYL2 could slowly hydrolyze AOS and AXOS such as A3X. Based on the detailed hydrolytic modes of action of three exo-hydrolases (BfdABF1, BfdABF3, and BfdXYL2) from Bf. dentium, their probable roles in the hemiceullose-utilization system of Bf. dentium are proposed in the present study. These intracellular exo-hydrolases can synergistically produce ʟ-arabinose and ᴅ-xylose from various AOS, XOS, and AXOS.

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Physicochemical Properties of Mixtures with Mixed Organic Fertilizer and Various Organic Sources and Their Influences on Growth of Two Leaf Vegetables (유기성 자원과 혼합유기질비료 혼합물의 특성 및 처리 후 엽채류의 생육 효과)

  • Kim, Young-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.47-57
    • /
    • 2021
  • This study was conducted to evaluate the properties of mixtures of mixed organic fertilizer (MOF) and various organic sources such as livestock manure compost (LMC), dried compost of poultry manure (CPM), dried food waste powder (FWP) and amino acid by-product fertilizer (ABF) and their influences on growth of lettuce and Chinese cabbage. The content of N, P2O5 and K2O of mixture of MOF, LMC and FWP (MLF) was 3.6~3.9%, 2.1~2.2% and 1.3~1.4%, respectively. Lettuce dry weight of MLF3 treatment blending with MOF (60%), LMC (10%) and FWP (30%) was increased by about 29% than that of MOF. The content of N, P2O5 and K2O of mixture of MOF, CPM, FWP and ABF (MCFA) was 4.5~4.7%, 1.7~1.9% and 1.3~1.4%, respectively. Compared to MOF, growth factors of lettuce and Chinese cabbage in the MCFA treatments were not significantly deferent. These results indicated that MLFs and MCFAs, the mixtures of respectively organic sources and MOF, could be applied as orgnic fertilizer in the cultivation of lettuce and Chinese cabbage, and were expected that LMC and ABF might be used as another sources of organic fertilizer.

Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera

  • Park, Tae Hyeon;Choi, Chang-Yun;Kim, Hyeon Jin;Song, Jeong-Rok;Park, Damee;Kang, Hyun Ah;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.272-279
    • /
    • 2021
  • Two genes encoding probable α-ʟ-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45℃ and pH 7.0 in sodium phosphate buffer and at 50℃ and pH 6.0 in sodium acetate buffer, respectively. These exoacting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only ʟ-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)- and α-(1,3)-ʟ-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)- and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.

Gene expression of fatty acid binding protein genes and its relationship with fat deposition of Thai native crossbreed chickens

  • Tunim, Supanon;Phasuk, Yupin;Aggrey, Samuel E.;Duangjinda, Monchai
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.751-758
    • /
    • 2021
  • Objective: The objectives of this study were to investigate the relationship between the mRNA expression of adipocyte type fatty acid binding protein (A-FABP) and heart type FABP (H-FABP) in Thai native chicken crossbreeds and evaluate the level of exotic inclusion in native chicken that will improve growth while maintaining its relatively low carcass fat. Methods: The fat deposition traits and mRNA expression of A-FABP and H-FABP were evaluated at 6, 8, 10, and 12 weeks of age in 4 chicken breeds (n = 8/breed/wk) (100% Chee breed [CH] [100% Thai native chicken background], CH male and broiler female [Kaimook e-san1; KM1] [50% CH background], broiler male and KM1 female [Kaimook e-san2; KM2] [25% CH background], and broiler [BR]) using abdominal fat (ABF) and muscular tissues. Results: The BR breed was only evaluated at 6 weeks of age. At week 6, the CH breed had a significantly lower A-FABP expression in ABF and intramuscular fat (IF) compared with the other breeds. At 8 to 12 weeks, the KM2 groups showed significant upregulation (p<0.05) of A-FABP in both ABF and IF compared to the CH and KM1 groups. The expression of H-FABP did not follow any consistent pattern in both ABF and IF across the different ages. Conclusion: Some level of crossbreeding CH chickens can be done to improve growth rate while maintaining their low ABF and IF. The expression level of A-FABP correlate with most fat traits. There was no consistency of H-FABP expression across breed. A-FABPs is involved in fat deposition, genetic markers in these genes could be used in marker assisted studies to select against excessive fat accumulation.

Flavor Characteristic of Functional Modified-butterfat Synthesized by Lipase-catalyzed Interesterification (효소적 공법을 이용한 기능성 modified-butterfat의 향기성분 특성 분석)

  • Shin, Jung-Ah;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.219-224
    • /
    • 2009
  • Two functional modified-butterfats (MF668 and MF866) were synthesized with two blends (6:6:8 and 8:6:6, w/w%) of anhydrous butterfat (ABF), palm stearin (PS) and flaxseed oil (FSO, omega-3) via lipase-catalyzed interesterification reaction. Their flavor characteristic was investigated using electronic nose and SPME-GC/MS analysis. Each flavor pattern of ABF, FSO, MF668 and MF866 was significantly discriminated with first principal component score of 95.16% in PCA plot. In functional modified-butterfats analyzed with SPME-GC/MS, various volatile compounds such as aldehydes, ketones, acids, and alkanes were detected.

  • PDF

QUADRATIC FUNCTIONAL EQUATIONS ASSOCIATED WITH BOREL FUNCTIONS AND MODULE ACTIONS

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.499-510
    • /
    • 2009
  • For a Borel function ${\psi}:\mathbb{R}{\times}\mathbb{R}{\rightarrow}\mathbb{R}$ satisfying the functional equation $\psi$ (s + t, u + v) + $\psi$(s - t, u - v) = $2\psi$(s, u) + $2\psi$(t, v), we show that it satisfies the functional equation $$\psi$$(s, t) = s(s - t)$$\psi$$(1, 0) + $$st\psi$$(1, 1) + t(t - s)$$\psi$$(0, 1). Using this, we prove the stability of the functional equation f(ax + ay, bz + bw) + f(ax - ay, bz - bw) = 2abf(x, z) + 2abf(y,w) in Banach modules over a unital $C^*$-algebra.

STABILITY OF TWO GENERALIZED 3-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATIONS

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • In this paper, we investigate the stability of two functional equations f(ax+by + cz) - abf(x + y) - bcf(y + z) - acf(x + z) + bcf(y) - a(a - b - c)f(x) - b(b - a)f(-y) - c(c - a - b)f(z) = 0, f(ax+by + cz) + abf(x - y) + bcf(y - z) + acf(x - z) - a(a + b + c)f(x) - b(a + b + c)f(y) - c(a + b + c)f(z) = 0 by applying the direct method in the sense of Hyers and Ulam.