• Title/Summary/Keyword: ABC-transporter

Search Result 59, Processing Time 0.026 seconds

Association between ABCB1 Immunohistochemical Expression and Overall Survival in Gastric Cancer Patients

  • de Oliveira, Juliana;Felipe, Aledson Vitor;Neto, Ricardo Artigiani;Oshima, Celina Tizuko;de Souza Silva, Marcelo;Forones, Nora Manoukian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6935-6938
    • /
    • 2014
  • Gastric cancer (GC) is one of the most common malignancies worldwide. The ABCB1 protein, a member of the ATP-binding cassette (ABC) transporter family, encoded by the ABCB1 gene, considerably influences the distribution of drugs across cell membranes as well as multidrug resistance (MDR) of antineoplastic drugs. In contrast to the extensive knowledge on the pharmacological action of ABCB1 protein, the correlation between the clinical-pathological data and ABCB1 protein expression in patients with GC remains unclear. The aim was to investigate association between ABCB1 expression and overall survival in GC patients. Human tumor fragments from 57 GC patients were examined by immunohistochemistry assay. We observed lower survival rate of patients with GC who were positive for ABCB1 expression (p=0.030). Based on these observations, we conclude that GC patients with positive ABCB1 protein immunohistochemical expression in their tumors suffer shorter overall survival.

Loop-Mediated Isothermal Amplification for the Detection of Xanthomonas arboricola pv. pruni in Peaches

  • Li, Weilan;Lee, Seung-Yeol;Back, Chang-Gi;Ten, Leonid N.;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.635-643
    • /
    • 2019
  • To detect Xanthomonas arboricola pv. pruni, a loopmediated isothermal amplification (LAMP) detection method were developed. The LAMP assay was designed to test crude plant tissue without pre-extraction, or heating incubation, and without advanced analysis equipment. The LAMP primers were designed by targeting an ABC transporter ATP-binding protein, this primer set was tested using the genomic DNA of Xanthomonas and non-Xanthomonas strains, and a ladder product was generated from the genomic DNA of X. arboricola pv. pruni strain but not from 12 other Xanthomonas species strains and 6 strains of other genera. The LAMP conditions were checked with the healthy leaves of 31 peach varieties, and no reaction was detected using either the peach leaves or the peach DNA as a template. Furthermore, the high diagnostic accuracy of the LAMP method was confirmed with 13 X. arboricola pv. pruni strains isolated from various regions in Korea, with all samples exhibiting a positive reaction in LAMP assays. In particular, the LAMP method successfully detected the pathogen in diseased peach leaves and fruit in the field, and the LAMP conditions were proven to be a reliable diagnostic method for the specific detection and identification of X. arboricola pv. pruni in peach orchards.

The Molecular Functions of RalBP1 in Lung Cancer

  • Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.49-55
    • /
    • 2014
  • RalBP1 is an ATP-dependent non-ABC transporter, responsible for the major transport function in many cells including many cancer cell lines, causing efflux of glutathione-electrophile conjugates of both endogenous metabolites and environmental toxins. RalBP1 is expressed in most human tissues, and is over-expressed in non-small cell lung cancer cell lines and in many other tumor types. Blockade of RalBP1 by various approaches has been shown to increase sensitivity to radiation and chemotherapeutic drugs, leading to cell apoptosis. In xenograft tumor models in mice, RalBP1 blockade or depletion results in complete and sustained regression across many cancer cell types including lung cancer cells. In addition to its transport function, RalBP1 has many other cellular and physiological functions, based on its domain structure which includes a unique Ral-binding domain and a RhoGAP catalytic domain, as well as docking sites for multiple signaling proteins. Additionally, RalBP1 is also important for stromal cell function in tumors, as it was recently shown to be required for efficient endothelial cell function and angiogenesis in solid tumors. In this review, we discuss the cellular and physiological functions of RalBP1 in normal and lung cancer cells.

Isolation of Citrobacter sp. Mutants Defective in Decolorization of Brilliant Green by Transposon Mutagenesis

  • Jang, Moon-Sun;Lee, Young-Mi;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.139-142
    • /
    • 2004
  • To identify genes involved in the decolorization of brilliant green, we isolated random mutants generated by transposon insertion in brilliant green-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 19 mutants with a complete defect in terms of the brilliant green color removing ability. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 7 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. By comparing these with a sequence database, putative protein products encoded by bg genes were identified as follows: bg 3 as a LysR-type regulatory protein; bg 11 as a MalG protein in the maltose transport system; bg 14 as an oxidoreductase; and bg 17 as an ABC transporter. The sequences deduced from the three bg genes, bg 2, bg 7 and bg 16, showed no significant similarity to any protein with a known function, suggesting that these three bg genes may encode unidentified proteins responsible for the decolorization of brilliant green.

Expression of Acid Stress-Induced Proteins of Streptococcus mutans Isolated from Korean Children with Caries (한국인 우식아동으로부터 분리한 Streptococcus mutans의 내산성 단백질의 발현)

  • Kang, Kyung-Hee;Nam, Jin-Sik;Jin, Ing-Nyol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1766-1772
    • /
    • 2009
  • In this study, we are interested in comparing the protein profiles of acid-shocked and control cells of S. mutans isolated from Korean children with caries. The results of 2D gel electrophoresis showed that twelve proteins are up-regulated when the cells were grown under 20 mM lactic acid stress in the exponential phase. Up-proteins under acid stress were estimated a major key of the survival and proliferation of S. mutans in low pH environments. These proteins are estimated generally associated with three biochemical pathways: glycolysis, alternative acid production and branched-chain amino acid biosynthesis.

X-linked adrenoleukodystrophy; Recent Advances in Classification, Diagnosis and Management (X 연관 부신백질이영양증의 분류, 진단 및 치료의 최신 지견)

  • Jung, Eul Sik;Ko, Ara;Kang, Hoon-Chul
    • Journal of the Korean Child Neurology Society
    • /
    • v.24 no.3
    • /
    • pp.71-83
    • /
    • 2016
  • X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ATP binding cassette subfamily D member 1 (ABCD1), a gene that encodes peroxisomal membrane located on ABC half-transporter named adrenoleukodystrophy protein (ALDP). X-ALD is characterized by a highly variable clinical spectrum, including progressive cerebral type, adrenomyeloneuropathy, and addison-only phenotype. No genotype/phenotype correlation has been established. Thus, unidentified modifier genes and other co-factors are speculated to modulate the phenotypic variation and disease severity. Recent advanced sequencing methods and reprogramming technologies not only offer an affordable and applicable approach to investigate the pathophysiological mechanisms of adrenoleukodystrophy, but also provide means to develop therapy. A causal therapy of X-ALD is lacking. Lorenzo's oil therapy is recommended for asymptomatic boys, but the longest study found that the oil was not beneficial at all to symptomatic X-ALD patients. Hematopoietic stem cell therapy has a relevant chance of success when performed during this early stage of cerebral type X-ALD. Recently, it has been insisted that lentiviral-mediated gene therapy of hematopoietic stem cells can provide clinical benefits in X-ALD. This review describes current knowledge on the clinical presentation, pathogenesis, diagnosis and management of X- ALD.

Filamentous growth of Escherichia coli by dephosphorylated NPr (탈인산화된 NPr에 의한 대장균의 섬유상 생장)

  • Choi, Umji;Seok, Yeong-Jae;Lee, Chang-Ro
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.149-155
    • /
    • 2017
  • The nitrogen phosphotransferase (PTS) system is a regulatory cascade present in most Proteobacteria, where it controls different functions. The nitrogen PTS is usually composed of $EI^{Ntr}$ (encoded by the ptsP gene), NPr (encoded by the ptsO gene), and $EIIA^{Ntr}$ (encoded by the ptsN gene). While $EIIA^{Ntr}$ plays a role in a variety of cellular processes, such as potassium homeostasis, regulation of ppGpp accumulation, nitrogen and carbon metabolisms, and regulation of ABC transporters, little information is available for a physiological role of NPr. A recent study showed that dephosphorylated NPr affects adaptation to envelope stresses in Escherichia coli. In this study, we provide another phenotype related to NPr. The ptsP mutant showed a filamentation phenotype. The filamentation phenotype of the ptsP mutant was recovered by additional deletion of the ptsO gene, but not by additional deletion of the ptsN gene, suggesting that an increased level of dephosphorylated NPr in the ptsP mutant renders cells the filamentous growth. This idea was confirmed by the fact that cells with increased levels of dephosphorylated NPr shows the filamentation phenotype. Additionally, we showed that cell size of E. coli increases with incremental dephosphorylated NPr concentrations. These results suggested that dephosphorylated NPr induces morphological change of E. coli.

Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate

  • Zeng, Qingwei;Wu, Xiaoqin;Wang, Jiangchuan;Ding, Xiaolei
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.844-855
    • /
    • 2017
  • Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

Differential Gene Expression in the Pathogenic Strains of Actinobacillus pleuropneumoniae Serotypes 1 and 3

  • Xie, Fang;Zhang, Mingjun;Li, Shuqing;Du, Chongtao;Sun, Changjiang;Han, Wenyu;Zhou, Liang;Lei, Liancheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.789-797
    • /
    • 2010
  • The limited information on differential gene expression in the different serotypes of Actinobacillus pleuropneumoniae has significantly hampered the research on the pathogenic mechanisms of this organism and the development of multivalent vaccines against A. pleuropneumoniae infection. To compare the gene expressions in the A. pleuropneumoniae strains CVCC259 (serotype 1) and CVCC261 (serotype 3), we screened the differentially expressed genes in the two strains by performing representational difference analysis (RDA). Northern blot analyses were used to confirm the results of RDA. We identified 22 differentially expressed genes in the CVCC259 strain and 20 differentially expressed genes in the CVCC261 strain, and these genes were classified into 11 groups: (1) genes encoding APX toxins; (2) genes encoding transferrin-binding protein; (3) genes involved in lipopolysaccharide (LPS) biosynthesis; (4) genes encoding autotransporter adhesin; (5) genes involved in metabolism; (6) genes involved in the ATP-binding cassette (ABC) transporter system; (7) genes encoding molecular chaperones; (8) genes involved in bacterial transcription and nucleic acid metabolism; (9) a gene encoding protease; (10) genes encoding lipoprotein/membrane protein; and (11) genes encoding various hypothetical proteins. This is the first report on the systematic application of RDA for the analysis of differential gene expression in A. pleuropneumoniae serotypes 1 and 3. The determination of these differentially expressed genes will serve as an indicator for future research on the pathogenic mechanisms of A. pleuropneumoniae and the development of a multivalent vaccine against A. pleuropneumoniae infection.

Influence of CO2 concentration on carbon concentrating mechanisms in cyanobacteria and green algae: a proteomic approach

  • Ramanan, Rishiram;Vinayagamoorthy, Nadimuthu;Sivanesan, Saravana Devi;Kannan, Krishnamurthi;Chakrabarti, Tapan
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.295-301
    • /
    • 2012
  • Carbon concentrating mechanisms play a vital role in photosynthesis in microalgae and cyanobacteria especially in the proper functioning of Rubisco and assimilation of carbon via the Calvin cycle. This study evaluates the role of carbon dioxide on carbon concentrating mechanism (CCM) in a cynaobacteria, Spirulina platensis and a microalga, Chlorella sp. 786. The study organisms were grown in both atmospheric (control sample, 0.035%) and high (exposed sample, 10%) $CO_2$ concentrations. Second dimension (2D) electrophoresis revealed a huge difference in the protein profiles of both organisms suggesting the induction of CCM related proteins in the sample maintained at atmospheric $CO_2$ concentration and the repression of CCM related proteins in the sample maintained at 10% $CO_2$. Liquid chromatography-mass spectroscopy analysis revealed the presence of two important $C_i$ transporter proteins in the control sample of S. platensis, namely ferredoxin-$NADP^+$ reductase and ATP binding cassette (ABC) transport system protein. These proteins were only expressed in the control sample and were downregulated or not expressed at all in the exposed sample. Consequently, this study conclusively proves that CCMs are only inducted at low $CO_2$ concentrations and are not functional at high $CO_2$ concentration.