DOI QR코드

DOI QR Code

Loop-Mediated Isothermal Amplification for the Detection of Xanthomonas arboricola pv. pruni in Peaches

  • Li, Weilan (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ;
  • Back, Chang-Gi (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science) ;
  • Ten, Leonid N. (School of Applied Biosciences, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
  • Received : 2019.07.16
  • Accepted : 2019.10.28
  • Published : 2019.12.01

Abstract

To detect Xanthomonas arboricola pv. pruni, a loopmediated isothermal amplification (LAMP) detection method were developed. The LAMP assay was designed to test crude plant tissue without pre-extraction, or heating incubation, and without advanced analysis equipment. The LAMP primers were designed by targeting an ABC transporter ATP-binding protein, this primer set was tested using the genomic DNA of Xanthomonas and non-Xanthomonas strains, and a ladder product was generated from the genomic DNA of X. arboricola pv. pruni strain but not from 12 other Xanthomonas species strains and 6 strains of other genera. The LAMP conditions were checked with the healthy leaves of 31 peach varieties, and no reaction was detected using either the peach leaves or the peach DNA as a template. Furthermore, the high diagnostic accuracy of the LAMP method was confirmed with 13 X. arboricola pv. pruni strains isolated from various regions in Korea, with all samples exhibiting a positive reaction in LAMP assays. In particular, the LAMP method successfully detected the pathogen in diseased peach leaves and fruit in the field, and the LAMP conditions were proven to be a reliable diagnostic method for the specific detection and identification of X. arboricola pv. pruni in peach orchards.

Keywords

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1992. Current protocols in molecular biology. Vol. I. Greene Publishing Associates and Wiley Interscience, New York, NY.
  2. Ballard, E. L., Dietzgen, R. G., Sly, L. I., Gouk, C., Horlock, C. and Fegan, M. 2011. Development of a Bio-PCR protocol for the detection of Xanthomonas arboricola pv. pruni. Plant Dis. 95:1109-1115. https://doi.org/10.1094/PDIS-09-10-0650
  3. Barionovi, D. and Scortichini, M. 2008. Integron variability in Xanthomonas arboricola pv. juglandis and Xanthomonas arboricola pv. pruni strains. FEMS Microbiol. Lett. 288:19-24. https://doi.org/10.1111/j.1574-6968.2008.01315.x
  4. Buhlmann, A., Pothier, J. F., Tomlinson, J. A., Frey, J. E., Boonham, N., Smits, T. H. M. and Duffy, B. 2013. Genomicsinformed design of loop-mediated isothermal amplification for detection of phytopathogenic Xanthomonas arboricola pv. pruni at the intraspecific level. Plant Pathol. 62:475-484. https://doi.org/10.1111/j.1365-3059.2012.02654.x
  5. Garita-Cambronero, J., Palacio-Bielsa, A., Lopez, M. M. and Cubero, J. 2017. Pan-genomic analysis permits differentiation of virulent and non-virulent strains of Xanthomonas arboricola that cohabit Prunus spp. and elucidate bacterial virulence factors. Front. Microbiol. 8:573.
  6. Goodman, C. A. and Hattingh, M. J. 1986. Transmission of Xanthomonas campestris pv. pruni in plum and apricot nursery trees by budding. HortScience 21:995-996.
  7. Hammerschlag, F. A. 2000. Resistant responses of peach somaclone 122-1 to Xanthomonas campestris pv. pruni and to Pseudomonas syringae pv. syringae. HortScience 35:141-143. https://doi.org/10.21273/hortsci.35.1.141
  8. Iwamoto, T., Sonobe, T. and Hayashi, K. 2003. Loop-mediated isothermal ampli-cation for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol. 41:2616-2622. https://doi.org/10.1128/JCM.41.6.2616-2622.2003
  9. Kawaguchi, A. 2014. Genetic diversity of Xanthomonas arboricola pv. pruni strains in Japan revealed by DNA fingerprinting. J. Gen. Plant Pathol. 80:366-369. https://doi.org/10.1007/s10327-014-0522-6
  10. Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, eds. by E. Stackebrandt and M. Goodfellow, pp. 115-175. Wiley, New York, USA.
  11. Lopez-Soriano, P., Noguera, P., Gorris, M. T., Puchades, R., Maquieira, A., Marco-Noales, E. and Lopez, M. M. 2017. Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. pruni in symptomatic field samples. PLoS ONE 12:e0176201. https://doi.org/10.1371/journal.pone.0176201
  12. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E63. https://doi.org/10.1093/nar/28.12.e63
  13. Pagani, M. C. 2005. An ABC transporter protein and molecular diagnosis of Xanthomonas arboricola pv. pruni causing bacterial spot of stone fruits. Ph.D. thesis. North Carolina State University, Raleigh, NC, USA.
  14. Palacio-Bielsa, A., Cubero, J., Cambra, M. A., Collados, R., Berruete, I. M. and Lopez, M. M. 2011. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Appl. Environ. Microbiol. 77:89-97. https://doi.org/10.1128/AEM.01593-10
  15. Palacio-Bielsa, A., Lopez-Soriano, P., Buhlmann, A., van Doorn, J., Pham, K., Cambra, M. A., Berruete, I. M., Pothier, J. F., Duffy, B., Olmos, A. and Lopez, M. M. 2015. Evaluation of a real-time PCR and a loop-mediated isothermal amplification for detection of Xanthomonas arboricola pv. pruni in plant tissue samples. J. Microbiol. Methods 112:36-39. https://doi.org/10.1016/j.mimet.2015.03.005
  16. Park, S. Y., Lee, Y. S., Koh, Y. J., Hur, J.-S. and Jung, J. S. 2010. Detection of Xanthomonas arboricola pv. pruni by PCR using primers based on DNA sequences related to the hrp genes. J. Microbiol. 48:554-558. https://doi.org/10.1007/s12275-010-0072-3
  17. Park, S. Y., Lee, Y. S., Shin, J. S., Koh, Y. J. and Jung, J. S. 2009. Genetic diversity of Xanthomonas arboricola pv. pruni isolated in Korea. J. Life Sci. 19:684-687. https://doi.org/10.5352/JLS.2009.19.5.684
  18. Pothier, J. F., Pagani, M. C., Pelludat, C., Ritchie, D. F. and Duffy, B. 2011. A duplex-PCR method for species- and pathovarlevel identification and detection of the quarantine plant pathogen Xanthomonas arboricola pv. pruni. J. Microbiol. Methods 86:16-24. https://doi.org/10.1016/j.mimet.2011.03.019
  19. Ritchie, D. F. 1995. Bacterial spot. In: Compendium of stone fruit diseases, eds. by J. M. Ogawa, E. I. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu and J. K. Uyemoto, pp. 50-52. APS Press, St. Paul, MN, USA.
  20. Ritchie, D. F. 1999. Sprays for control of bacterial spot of peach cultivars having different levels of disease susceptibility, 1998. Fungic. Nematic. Tests 54:63-64.
  21. Snaidr, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. H. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:2884-2896. https://doi.org/10.1128/aem.63.7.2884-2896.1997
  22. Tan, L., Rong, W., Lou, H., Chen, Y. and He, C. 2014. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. New Phytol. 204:595-608. https://doi.org/10.1111/nph.12918
  23. Vauterin, L., Hoste, B., Kersters, K. and Swings, J. 1995. Reclassi-cation of Xanthomonas. Int. J. Syst. Evol. Bacteriol. 45:472-489. https://doi.org/10.1099/00207713-45-3-472
  24. Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617. https://doi.org/10.1099/ijsem.0.001755
  25. Zaccardelli, M., Malaguti, S. and Bazzi, C. 1998. Biological and epidemiological aspects of Xanthomonas arboricola pv. pruni on peach in Italy. J. Plant Pathol. 80:125-132.