DOI QR코드

DOI QR Code

Genetic Variability Based on Tandem Repeat Numbers in a Genomic Locus of 'Candidatus Liberibacter asiaticus' Prevalent in North East India

  • Singh, Yanglem Herojit (Department of Plant Pathology, College of Agriculture, Central Agricultural University) ;
  • Sharma, Susheel Kumar (ICAR Research Complex for NEH Region) ;
  • Sinha, Bireswar (Department of Plant Pathology, College of Agriculture, Central Agricultural University) ;
  • Baranwal, Virendra Kumar (Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute) ;
  • Singh, N. Bidyananda (ICAR Research Complex for NEH Region) ;
  • Chanu, Ngathem Taibangnganbi (ICAR Research Complex for NEH Region) ;
  • Roy, Subhra S. (ICAR Research Complex for NEH Region) ;
  • Ansari, Meraj A. (ICAR Research Complex for NEH Region) ;
  • Ningombam, Arati (ICAR Research Complex for NEH Region) ;
  • Devi, Ph. Sobita (Department of Plant Pathology, College of Agriculture, Central Agricultural University) ;
  • Das, Ashis Kumar (ICAR-Central Citrus Research Institute) ;
  • Singh, Salvinder (Department of Agricultural Biotechnology, Assam Agricultural University) ;
  • Singh, K. Mamocha (Department of Entomology, College of Agriculture, Central Agricultural University) ;
  • Prakash, Narendra (ICAR Research Complex for NEH Region)
  • Received : 2019.03.21
  • Accepted : 2019.09.05
  • Published : 2019.12.01

Abstract

The genetic variability of 'Candidatus Liberibacter asiaticus' (CLas) population associated with huanglongbing (HLB) disease of citrus in North Eastern (NE) region of India, a geographically locked region, and home for the diversity of many citrus species was analyzed on the basis of tandem repeat numbers (TRN) in variable CLIBASIA_01645 genomic loci. Fifty-five CLas strains sampled from different groves of NE Hill (NEH) region of India were in single amplicon group, but there was remarkable genetic variability in TRNs. The TRN in HLB-associated CLas strains varied from 0-21 and two novel repeat motifs were also identified. Among the NE population of CLas, TRN5 and TRN9 were most frequent (total frequency of 36.36%) followed by TRN4 (14.55%) and TRN6, TNR7 with a frequency of 12.73% each. Class II type CLas genotypes (5 < TRN ≤ 10) had highest prevalence (frequency of 60.00%) in the samples characterized in present study. Class I (TRN ≤ 5) genotypes were second highest prevalent (29.09%) in the NEH region. Further analysis of genetic diversity parameters using Nei's measure (H value) indicated wide genetic diversity in the CLas strains of NE India (H value of 0.58-0.86). Manipur CLas strains had highest genetic variability (0.86) as compared to Eastern, Southern and Central India. The R10 values (TRN ≤ 10/TRN > 10) of NE CLas population was 10.43 (73/7), higher from other regions of India. Present study conclusively reported the occurrence of high genetic variability in TRN of CLas population in North East Indian citrus groves which have evolved to adapt to the specific ecological niche.

Keywords

References

  1. Ahlawat, Y. S. 1997. Viruses, greening, bacterium and viroids associated with citrus (Citrus species) decline in India. Indian J. Agric. Sci. 67:51-57.
  2. Bastianel, C., Garnier-Semancik, M., Renaudin, J., Bove, J. M. and Eveillard, S. 2005. Diversity of "Candidatus Liberibacter asiaticus," based on the omp gene sequence. Appl. Environ. Microbiol. 71:6473-6478. https://doi.org/10.1128/AEM.71.11.6473-6478.2005
  3. Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:573-580. https://doi.org/10.1093/nar/27.2.573
  4. Bichara, M., Wagner, J. and Lambert, I. B. 2006. Mechanisms of tandem repeat instability in bacteria. Mutat. Res. 598:144-163. https://doi.org/10.1016/j.mrfmmm.2006.01.020
  5. Boles, B. R., Thoendel, M. and Singh, P. K. 2004. Self-generated diversity produces "insurance effects" in biofilm communities. Proc. Natl. Acad. Sci. U. S. A. 101:16630-16635. https://doi.org/10.1073/pnas.0407460101
  6. Bove, J. M. 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88:7-37.
  7. Brown, S. E., Oberheim, A. P., Barret, A. and McLaughlin, W. A. 2011. First report of 'Candidatus Liberibacter asiaticus' associated with huanglongbing in the weeds Cleome rutidosperma, Pisonia aculeata and Trichostigma octandrum in Jamaica. New Dis. Rep. 24:25. https://doi.org/10.5197/j.2044-0588.2011.024.025
  8. Capoor, S. P. 1963. Decline of citrus tree in India. Bull. Natl. Inst. Sci. India 24:48-64.
  9. Capoor, S. P., Rao, D. G. and Viswanath, S. M. 1967. Diaphorina citri Kuway: a vector of the greening disease of citrus in India. Indian J. Agric. Sci. 37:572-576.
  10. Chen, J., Deng, X., Sun, X., Jones, D., Irey, M. and Civerolo, E. 2010. Guangdong and Florida populations of 'Candidatus Liberibacter asiaticus' distinguished by a genomic locus with short tandem repeats. Phytopathology 100:567-572. https://doi.org/10.1094/PHYTO-100-6-0567
  11. Coletta-Filho, H. D., Targon, M. L. P. N., Takita, M. A., De Negri, J. D., Pompeu, J. Jr., Marchado, M. A., do Amaral, A. M. and Muller, G. W. 2004. First report of the causal agent of Huanglongbing ("Candidatus Liberibacter asiaticus") in Brazil. Plant Dis. 88:1382.
  12. Datar, V. V., Chavan, V., Verma, R., Mungekar, D., Gaikwad, P. and Tripathi, S. 2014. Survey and identification of citrus greening bacterium from multiple locations in Maharashtra. J. Plant Dis. Sci. 9:60-63.
  13. Deng, X., Chen, J. and Li, H. 2008. Sequestering from host and characterization of sequence of a ribosomal RNA operon (rrn) from "Candidatus Liberibacter asiaticus". Mol. Cell. Probes 22:338-340. https://doi.org/10.1016/j.mcp.2008.09.002
  14. Duan, Y., Zhou, L., Hall, D. G., Li, W., Doddapaneni, H., Lin, H., Liu, L., Vahling, C. M., Gabriel, D. W., Williams, K. P., Dickerman, A., Sun, Y. and Gottwald, T. 2009. Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics. Mol. Plant-Microbe Interact. 22:1011-1020. https://doi.org/10.1094/MPMI-22-8-1011
  15. Ghosh, D. K., Bhose, S., Motghare, M., Warghane, A., Mukherjee, K., Ghosh, D. K. Sr., Sharma, A. K., Ladaniya, M. S. and Gowda, S. 2015. Genetic diversity of the Indian populations of 'Candidatus Liberibacter asiaticus' based on the tandem repeat variability in a genomic locus. Phytopathology 105:1043-1049. https://doi.org/10.1094/PHYTO-09-14-0253-R
  16. Gomez, K. A. and Gomez, A. A. 1984. Statistical procedures for agricultural research. 2nd ed. John Wiley and Sons, New York, NY, USA. 680 pp.
  17. Halbert, S. E. 2005. The discovery of huanglongbing in Florida. In: Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop, eds. by T. R. Gottwald, W. N. Dixon, J. H. Graham and P. Berger, pp. 1-3. Florida Citrus Mutual, Orlando FL, USA.
  18. Halbert, S. E. and Manjunath, K. L. 2004. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Fla. Entomol. 87:330-353. https://doi.org/10.1653/0015-4040(2004)087[0330:ACPSPA]2.0.CO;2
  19. Hocquellet, A., Toorawa, P., Bove, J. M. and Garnier, M. 1999. Detection and identification of the two Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the $\beta$ operon. Mol. Cell. Probes 13:373-379. https://doi.org/10.1006/mcpr.1999.0263
  20. Jagoueix, S., Bove, J. M. and Garnier, M. 1994. The phloemlimited bacterium of greening disease of citrus is a member of the $\alpha$ subdivision of the Proteobacteria. Int. J. Syst. Bacteriol. 44:379-386. https://doi.org/10.1099/00207713-44-3-379
  21. Katoh, H., Subandiyah, S., Tomimura, K., Okuda, M., Su, H.-J. and Iwanami, T. 2011. Differentiation of "Candidatus Liberibacter asiaticus" isolates by variable-number tandem-repeat analysis. Appl. Environ. Microbiol. 77:1910-1917. https://doi.org/10.1128/AEM.01571-10
  22. Lin, H., Civerolo, E. L., Hu, R., Barros, S., Francis, M. and Walker, M. A. 2005. Multilocus simple sequence repeat markers for differentiating strains and evaluating genetic diversity of Xylella fastidiosa. Appl. Environ. Microbiol. 71:4888-4892. https://doi.org/10.1128/AEM.71.8.4888-4892.2005
  23. Lindstedt, B. A. 2005. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26:2567-x2582. https://doi.org/10.1002/elps.200500096
  24. Liu, R., Zhang, P., Pu, X., Xing, X., Chen, J. and Deng, X. 2011. Analysis of a prophage gene frequency revealed population variation of 'Candidatus Liberibacter asiaticus' from two citrus-growing provinces in China. Plant Dis. 95:431-435. https://doi.org/10.1094/PDIS-04-10-0300
  25. Ma, W., Liang, M., Guan, L., Xu, M., Wen, X., Deng, X. and Chen, J. 2014. Population structures of 'Candidatus Liberibacter asiaticus' in southern China. Phytopathology 104:158-162. https://doi.org/10.1094/PHYTO-04-13-0110-R
  26. Manjunath, K. L., Ramadugu, C., Majil, V. M., Williams, S., Irey, M. and Lee, R. F. 2010. First report of the citrus Huanglongbing associated bacterium 'Candidatus Liberibacter asiaticus' from sweet orange, Mexican lime, and Asian citrus psyllid in Belize. Plant Dis. 94:781.
  27. Martinez, Y., Llauger, R., Batista, L., Luis, M., Iglesia, A., Collazo, C., Pena, I., Casin, J. C., Cueto, J. and Tablada, L. M. 2009. First report of 'Candidatus Liberibacter asiaticus' associated with Huanglongbing in Cuba. Plant Pathol. 58:389.
  28. Matos, L., Hilf, M. E. and Camejo, J. 2009. First report of 'Candidatus Liberibacter asiaticus' associated with citrus huanglongbing in the Dominican Republic. Plant Dis. 93:668. https://doi.org/10.1094/PDIS-93-6-0668B
  29. Meena, R. P. and Baranwal, V. K. 2016. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees. J. Virol. Methods 235:58-64. https://doi.org/10.1016/j.jviromet.2016.05.012
  30. Miyakawa, T. and Tsuno, K. 1989. Occurrence of citrus greening disease in the southern islands of Japan. Ann. Phytopathol. Soc. Jpn. 55:667-670 (In Japanese). https://doi.org/10.3186/jjphytopath.55.667
  31. Moxon, E. R., Rainey, P. B., Nowak, M. A. and Lenski, R. E. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4:24-33. https://doi.org/10.1016/s0960-9822(00)00005-1
  32. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70:3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  33. Oberholzer, P. C. J., von Standen, D. F. A. and Basson, W. J. 1965. Greening disease of sweet orange in South Africa. In: Proceedings of the 3rd Conference of the International Organization of Citrus Virologists, ed. by W. C. Price, pp. 213-219. University of Florida Press, Gainesville, FL, USA.
  34. Razin, S., Yogev, D. and Naot, Y. 1998. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62:1094-1156. https://doi.org/10.1128/mmbr.62.4.1094-1156.1998
  35. Texeira, D. C., Ayres, J., Kitajima, E. W., Danet, L., Jagoueix-Eveillard, S., Saillard, C. and Bove, J. M. 2005. First report of a huanglongbing like disease of citrus in Sao Paulo State, Brazil, and association of a new Liberibacter species, 'Candidatus Liberibacter americanus', with the disease. Plant Dis. 89:107.
  36. Tomimura, K., Miyata, S.-I., Furuya, N., Kubota, K., Okuda, M., Subandiyah, S., Hung, T.-H., Su, H.-J. and Iwanami, T. 2009. Evaluation of genetic diversity among 'Candidatus Liberibacter asiaticus' isolates collected in Southeast Asia. Phytopathology 99:1062-1069. https://doi.org/10.1094/phyto-99-9-1062
  37. van Belkum, A., Scherer, S., van Alphen, L. and Verbrugh, H. 1998. Short-sequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62:275-293. https://doi.org/10.1128/mmbr.62.2.275-293.1998
  38. Verstrepen, K. J., Jansen, A., Lewitter, F. and Fink, G. R. 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37:986-990. https://doi.org/10.1038/ng1618
  39. Zhang, S., Flores-Cruz, Z., Zhou, L., Kang, B.-H., Fleites, L. A., Gooch, M. D., Wulff, N. A., Davis, M. J., Duan, Y.-P. and Gabriel, D. W. 2011. ''Ca. Liberibacter asiaticus' carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections. Mol. Plant Microbe Interact. 24:458-468. https://doi.org/10.1094/MPMI-11-10-0256
  40. Zhou, K., Aertsen, A. and Michiels C. W. 2014. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol. Rev. 38:119-141. https://doi.org/10.1111/1574-6976.12036