DOI QR코드

DOI QR Code

Connection the Rhizomicrobiome and Plant MAPK Gene Expression Response to Pathogenic Fusarium oxysporum in Wild and Cultivated Soybean

  • Chang, Chunling (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) ;
  • Xu, Shangqi (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) ;
  • Tian, Lei (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) ;
  • Shi, Shaohua (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) ;
  • Nasir, Fahad (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) ;
  • Chen, Deguo (College of Life Science, Jilin Agricultural University) ;
  • Li, Xiujun (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences) ;
  • Tian, Chunjie (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences)
  • Received : 2019.04.21
  • Accepted : 2019.11.04
  • Published : 2019.12.01

Abstract

Little known the connections between soybeans mitogen-activated protein kinase (MAPK) gene expression and the rhizomicrobiome upon invasion of the root pathogen Fusarium oxysporum. To address this lack of knowledge, we assessed the rhizomicrobiome and root transcriptome sequencing of wild and cultivated soybean during the invasion of F. oxysporum. Results indicated F. oxysporum infection enriched Bradyrhizobium spp. and Glomus spp. and induced the expression of more MAPKs in the wild soybean than cultivated soybean. MAPK gene expression was positively correlated with Pseudomonadaceae but negatively correlated with Sphingomonadaceae and Glomeraceae in both cultivated and wild soybean. Specifically, correlation profiles revealed that Pseudomonadaceae was especially correlated with the induced expression of GmMAKKK13-2 (Glyma.14G195300) and GmMAPK3-2 (Glyma.12G073000) in wild and cultivated soybean during F. oxysporum invasion. Main fungal group Glomeraceae was positively correlated with GmMAPKKK14-1 (Glyma.18G060900) and negatively correlated with GmRaf6-4 (Glyma.02G215300) in the wild soybean response to pathogen infection; while there were positive correlations between Hypocreaceae and GmMAPK3-2 (Glyma.12G073000) and between Glomeraceae and GmRaf49-3 (Glyma.06G055300) in the wild soybean response, these correlations were strongly negative in the response of cultivated soybean to F. oxysporum. Taken together, MAPKs correlated with different rhizomicrobiomes indicating the host plant modulated by the host self-immune systems in response to F. oxysporum.

Keywords

References

  1. Abarenkov, K., Henrik Nilsson, R., Larsson, K. H., Alexander, I. J., Eberhardt, U., Erland, S., Hoiland, K., Kjoller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F., Tedersoo, L., Ursing, B. M., Vralstad, T., Liimatainen, K., Peintner, U. and Koljalg, U. 2010. The UNITE database for molecular identification of fungi: recent updates and future perspectives. New Phytol. 186:281-285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
  2. Andreasson, E. and Ellis, B. 2010. Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci. 15:106-113. https://doi.org/10.1016/j.tplants.2009.12.001
  3. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983. https://doi.org/10.1038/415977a
  4. Bartsev, A. V., Deakin, W. J., Boukli, N. M., McAlvin, C. B., Stacey, G., Malnoe, P., Broughton, W. J. and Staehelin, C. 2004. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol. 134:871-879. https://doi.org/10.1104/pp.103.031740
  5. Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742-744. https://doi.org/10.1126/science.1171647
  6. Bulgarelli, D., Garrido-Oter, R., Munch, P. C., Weiman, A., Droge, J., Pan, Y., McHardy, A. C. and Schulze-Lefert, P. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392-403. https://doi.org/10.1016/j.chom.2015.01.011
  7. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., Mc-Donald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7:335-336. https://doi.org/10.1038/nmeth.f.303
  8. Chang, C., Tian, L., Ma, L. N., Li, W., Nasir, F., Li, X., Tran, L.-S. P. and Tian, C. 2018. Differential responses of molecular mechanims and physiochemical characters in wild and cultivated soybeans against invasion by the pathogenic Fusarium oxysporum Schltdl. Physiol. Plant. 166:1008-1025. https://doi.org/10.1111/ppl.12870
  9. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. https://doi.org/10.1016/j.cell.2006.02.008
  10. Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  11. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G. L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069-5072. https://doi.org/10.1128/AEM.03006-05
  12. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539-548. https://doi.org/10.1038/nrg2812
  13. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A. and Sundaresan, V. 2015. Structure, variation, and assembly of the rootassociated microbiomes of rice. Proc. Natl. Acad. Sci. U. S. A. 112:E911-E920. https://doi.org/10.1073/pnas.1414592112
  14. Fernandez-Pascual, M., Lucas, M. M., de Felipe, M. R., Bosca, L., Hirt, H. and Golvano, M. P. 2006. Involvement of mitogenactivated protein kinases in the symbiosis Bradyrhizobium-Lupinus. J. Exp. Bot. 57:2735-2742. https://doi.org/10.1093/jxb/erl038
  15. Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2004. Microbail diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  16. Jimenez, D. R. C. 2017. Soybean root rot caused by Fusarium oxysporum and Fusarium graminearum: interactions with biotic and abiotic factors. Ph.D. thesis. Iowa State University, Ames, IA, USA.
  17. Jimtha, J. C., Smitha, P. V., Anisha, C., Deepthi, T., Meekha, G., Radhakrishnan, E. K., Gayatri, G. P. and Remakanthan, A. 2014. Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant Cell Tissue Organ Cult. 118:57-66. https://doi.org/10.1007/s11240-014-0461-0
  18. Kim, M., Hyten, D. L., Niblack, T. L. and Diers, B. W. 2011. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci. 51:934-943. https://doi.org/10.2135/cropsci2010.08.0459
  19. Li, G., Zhou, X. and Xu, J.-R. 2012. Genetic control of infectionrelated development in Magnaporthe oryzae. Curr. Opin. Microbiol. 15:678-684. https://doi.org/10.1016/j.mib.2012.09.004
  20. Li, Y., Guan, R., Liu, Z., Ma, Y., Wang, L., Li, L., Lin, F., Luan, W., Chen, P., Yan, Z., Guan, Y., Zhu, L., Ning, X., Smulders, M. J., Li, W., Piao, R., Cui, Y., Yu, Z., Guan, M., Chang, R., Hou, A., Shi, A., Zhang, B., Zhu, S. and Qiu, L. 2008. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor. Appl. Genet. 117:857-871. https://doi.org/10.1007/s00122-008-0825-0
  21. Liu, Z., Li, Y., Ma, L., Wei, H., Zhang, J., He, X. and Tian, C. 2015. Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance. Mol. Plant-Microbe Interact. 28:408-419. https://doi.org/10.1094/MPMI-09-14-0251-R
  22. Louca, S., Parfrey, L. W. and Doebeli, M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272-1277. https://doi.org/10.1126/science.aaf4507
  23. Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., del Rio, T. G., Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G. and Dangl, J. L. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86-90. https://doi.org/10.1038/nature11237
  24. Luo, S., Tian, L., Chang, C., Wang, S., Zhang, J., Zhou, X., Li, X., Tran, L.-S. P. and Tian, C. 2018. Grass and maize vegetation systems restore saline-sodic soils in the Songnen Plain of northeast China. Land Degrad. Dev. 29:1107-1119. https://doi.org/10.1002/ldr.2895
  25. Magoc, T. and Salzberg, S. L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957-2963. https://doi.org/10.1093/bioinformatics/btr507
  26. Micallef, S. A., Shiaris, M. P. and Colon-Carmona, A. 2009. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J. Exp. Bot. 60:1729-1742. https://doi.org/10.1093/jxb/erp053
  27. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 104:19613-19618. https://doi.org/10.1073/pnas.0705147104
  28. Neupane, A., Nepal, M. P., Piya, S., Subramanian, S., Rohila, J. S., Reese, R. N. and Benson, B. V. 2013. Identification, nomenclature, and evolutionary relationships of mitogen-activated protein kinase (MAPK) genes in soybean. Evol. Bioinform. Online 9:363-386. https://doi.org/10.4137/EBO.S12526
  29. Ofek-Lalzar, M., Sela, N., Goldman-Voronov, M., Green, S. J., Hadar, Y. and Minz, D. 2013. Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5:4950. https://doi.org/10.1038/ncomms5950
  30. Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S. and Ley, R. E. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. U. S. A. 110:6548-6553. https://doi.org/10.1073/pnas.1302837110
  31. Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M. and Bakker, P. A. H. M. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
  32. Pitzschke, A., Schikora, A. and Hirt, H. 2009. MAPK cascade signalling networks in plant defence. Curr. Opin. Plant Biol. 12:421-426. https://doi.org/10.1016/j.pbi.2009.06.008
  33. Rodriguez, M. C., Petersen, M. and Mundy, J. 2010. Mitogenactivated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61:621-649. https://doi.org/10.1146/annurev-arplant-042809-112252
  34. Rosenblueth, M. and Martinez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  35. Scandiani, M. M., Luque, A. G., Razori, M. V., Ciancio Casalini, L., Aoki, T., O'Donnell, K., Cervigni, G. D. L. and Spampinato, C. P. 2015. Metabolic profiles of soybean roots during early stages of Fusarium tucumaniae infection. J. Exp. Bot. 66:391-402. https://doi.org/10.1093/jxb/eru432
  36. Schoenbeck, M. A., Samac, D. A., Fedorova, M., Gregerson, R. G., Gantt, J. S. and Vance, C. P. 1999. The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol. Plant-Microbe Interact. 12:882-893. https://doi.org/10.1094/MPMI.1999.12.10.882
  37. Segonzac, C., Feike, D., Gimenez-Ibanez, S., Hann, D. R., Zipfel, C. and Rathjen, J. P. 2011. Hierarchy and roles of pathogenassociated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol. 156:687-699. https://doi.org/10.1104/pp.110.171249
  38. Shoresh, M., Gal-On, A., Leibman, D. and Chet, I. 2006. Characterization of a mitogen-activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance. Plant Physiol. 142:1169-1179. https://doi.org/10.1104/pp.106.082107
  39. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L. and Ideker, T. 2010. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431-432.
  40. Tian, L., Shi, S., Nasir, F., Chang, C., Li, W., Tran, L.-S. P. and Tian, C. 2018. Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses. Rice 11:26. https://doi.org/10.1186/s12284-018-0211-8
  41. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7:562-578. https://doi.org/10.1038/nprot.2012.016
  42. Tu, J. C. 1987. Integrated control of the pea root rot disease complex in Ontario. Plant Dis. 71:9-13. https://doi.org/10.1094/PD-71-0009
  43. Turra, D., Segorbe, D. and Di Piertro, A. 2014. Protein kinases in plant-pathogenic fungi: conserved regulators of infection. Annu. Rev. Phytopathol. 52:267-288. https://doi.org/10.1146/annurev-phyto-102313-050143
  44. Weidmann, S., Sanchez, L., Descombin, J., Chatagnier, O., Gianinazzi, S. and Gianinazzi-Pearson, V. 2004. Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol. Plant-Microbe Interact. 17:1385-1393. https://doi.org/10.1094/MPMI.2004.17.12.1385
  45. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand and J. J. Sninsky, pp. 315-322. Academic Press, New York, USA.
  46. Zhang, J., Wang, J., Jiang, W., Liu, J., Yang, S., Gai, J. and Li, Y. 2016. Identification and analysis of $NaHCO_3$ stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq. Front. Plant Sci. 7:1842.
  47. Zhang, S. and Klessig, D. F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6:520-527. https://doi.org/10.1016/S1360-1385(01)02103-3
  48. Zhou, X., Tian, L., Zhang, J., Ma, L., Li, X. and Tian, C. 2017. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L. J. Basic Microbiol. 57:1055-1064. https://doi.org/10.1002/jobm.201700312