• 제목/요약/키워드: ABA(Abscisic acid)

검색결과 157건 처리시간 0.037초

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

토마토 유식물의 Polyphenol Oxidase에 미치는 상해 및 Jasmonic Acid의 영향 (Effects of Wounding and Jasmonic Acid on Polyphenol Oxidase in Tomato Seedlings)

  • 진선영;홍정희
    • 한국환경과학회지
    • /
    • 제8권6호
    • /
    • pp.669-676
    • /
    • 1999
  • The effects of wounding and jasmonic acid(JA) on polyphenol oxidase(PPO) in tomato(Lycopersicon esculentum Mill.) seedlings were investigated. PPO was strongly induced by wounding or JA, and the response was also shown to be systemically induced by wounding. Mechanical wounding in cotyledon or leaf produced a signal that caused the concentration of PPO to increase in the unwounded cotyledon, in the first leaves but not in the second leaves. Severity of wounding and light intensity also affected wound induced change in PPO activity, JA showed a stimulatory effect on the loss of chlorophyll and the rapid increase in PPO activity. The PPO was clearly more active in the wounded leaves than in controls. The potency and specificity of the JA indicate a close relationship between JA and wound-induced changes in PPO in tomato species. JA and abscisic acid(ABA) acted similarly on both unwounded and wounded leaves, but the amount of PPO in the wounded leaves was always more than the respective controls. The highest increase in PPO activity occurred in woundand JA-induced leaves of seedlings kept under bright lighting. Benzyladenine(BA) completely abolished JA- and ABA-induced PPO activity. The results suggest that JA-induced PPO activity is due to de novo PPO synthesis. Histochemical tests for PPO in stems of wound- and JA -treated tomato plants indicate that PPO was localized primarily, in the. outer .cortex . and xylem parenchyma. It is concluded that exogenously applied JA acts as stress agents and PPO may be a component of the inducible anti-hervivore defense response.

  • PDF

포도 '캠벨얼리' 품종의 전엽기 생장조절제 처리가 품질에 미치는 영향 (Effects of Plant Growth Regulators Sprayed at Unfolded Leaf Stage on Fruit Quality in 'Campbell Early' Grape)

  • 천종필;김병기;배태민;오경영;김진국
    • 농업생명과학연구
    • /
    • 제46권6호
    • /
    • pp.9-15
    • /
    • 2012
  • 본 연구는 식물생장조절물질을 활용하여 '캠벨얼리' 포도의 품질향상 증진 방안을 마련하기 위하여 실시하였다. 전엽 3~5엽기에 화방에 대한 지베렐린($GA_3$) $5mg{\cdot}L^{-1}$ 엽면처리는 '캠벨얼리' 포도의 과경, 과방중, 가용성당함량, 과피의 착색을 증진시켰다. 전엽 3~4엽기의 화방에 대한 $GA_3$ $5mg{\cdot}L^{-1}$과 ABA $20\;mg{\cdot}L^{-1}$ 혼용처리는 과립 비대와 과축 신장을 저해하지 않았으며 포도 과피의 안토시아닌 축적에 효과적이었다. '캠벨얼리' 포도의 전엽 3~4엽기에 화방에 대한 thidiazuron $2.5mg{\cdot}L^{-1}$$GA_3$ $5mg{\cdot}L^{-1}$ 혼용처리는 가용성고형물 함량 증진과 산함량 감소를 촉진하여 과실 품질이 증대되었다.

A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

  • Baek, Dongwon;Chun, Hyun Jin;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Hong, Hyewon;Kim, Chanmin;Kim, Doh Hoon;Lee, Sang Yeol;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.111-118
    • /
    • 2016
  • MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.

The Role of Adenylyl Sulfate Reductase to Abiotic Stress in Tomato

  • Seong, Eun-Soo;Lee, Ji-Yeon;Yu, Chang-Yeon;Yang, Deok-Chun;Eom, Seok-Hyun;Cho, Dong-Ha
    • Journal of Plant Biotechnology
    • /
    • 제34권3호
    • /
    • pp.173-180
    • /
    • 2007
  • The full-length cDNA of LeAPR1 encoded a protein of 461 amino acid residues, which contained homology with phosphoadenosine phosphosulphate reductase (PAPS reductase) in N-terminal and an adenylylsulfate reductase in N-term and C-terminal. Analysis of the deduced amino acid sequence of LeAPR1 revealed that it shares high sequence identity with potato StAPR (96% identity)(Gene bank accession no. CDC44841). We found that multiple copies of LeAPR1 gene are present in the tomato genome through southern blot using genomic DNA was digested with 3 different restriction enzymes. The expression of LeAPR1 was also examined in various organs and its expression was also detected at high levels in roots and stems. Only high amounts of LeAPR1 transcripts were detected at high transcripts in the leaves at time 0, and then reduced as the plant stressed by the NaCl and abscisic acid (ABA). After 24h treatment of NaCl and ABA were showed increasing patterns of LeAPR1 gene. Time course of LeAPR1 gene expression was examined under oxidative stresses from metyl viologen (MV) and hydrogen peroxide ($H_2O_2$). In the presence of 10 mM $H_2O_2$ and $50\;{\mu}M$ MV, the levels of LeAPR1 transcript in leaves decreased after 1 h, and then increased strongly, peaked at 24 h. Our results indicated that LeAPR1 may play a role function of circadian regulation involved in abiotic stresses signaling pathways.

Alteration of plant hormones in transgenic rice (Oryza sativa L.) by overexpression of anti-apoptosis genes during salinity stress

  • Ubaidillah, Mohammad;Safitri, Fika Ayu;Lee, Sangkyu;Park, Gyu-Hwan;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.168-179
    • /
    • 2015
  • We previously identified the rice gene, OsSAP, as an encoder of a highly conserved putative senescence-associated protein that was shown to have anti-apoptotic activity. To confirm the role of OsSAP in inducing abiotic stress tolerance in rice, we introduced OsSAP and AtBI-1, a plant homologue of Bax inhibitor-1, under the control of the CaMV 35S promoter into the rice genome through Agrobacterium-mediated transformation. The OsSAP transformants showed a similar chlorophyll index after salinity treatments with AtBI-1. Furthermore, we compared the effects of salinity stress on leaves and roots by examining the hormone levels of abscisic acid (ABA), jasmonic acid (JA), gibberellic acid (GA3), and zeatin in transformants compared to the control. With the exception of phytohormones, stress-induced changes in hormone levels putatively related to stress tolerance have not been investigated previously. Hormonal level analysis confirmed the lower rate of stress in the transformants compared to the control. The levels of ABA and JA in OsSAP and AtBI-1 transformants were similar, where stress rates increased after one week and decreased after a two week period of drought; there was a slightly higher accumulation compared to the control. However, a similar trend was not observed for the level of zeatin, as the decrease in the level of zeatin accumulation differed in both OsSAP and AtBI-1 transformants for all genotypes during the early period of salinity stress. The GA3 level was detected under normal conditions, but not under salinity stress.

변색기 고온에 의한 포도 '거봉'의 과피 착색 및 내생 호르몬 변화 (Skin Coloration and Endogenous Hormonal Changes of 'Kyoho' Grape by High Temperature at Veraison)

  • 류수현;조정건;정재훈;이슬기;한점화;김명수
    • 생물환경조절학회지
    • /
    • 제28권3호
    • /
    • pp.234-242
    • /
    • 2019
  • 여름철 고온에 의한 포도 '거봉'의 과피색 불량의 원인을 구명하기 위해, 고온에 따른 과피의 착색 및 식물호르몬 ABA와 GA의 함량 및 대사 관련 유전자의 발현을 분석하였다. 변색기부터 10일 동안의 고온에 의해 '거봉' 포도의 과피색 불량이 나타났으며, 착색을 제외한 나머지 과실품질에는 영향이 없었다. 과피의 총 안토시아닌이 고온처리에 의해 감소하였으며, 안토시아니딘 그룹별로는 malvidin과 peonidin이 대조구에 비해 감소하였다. 과피의 식물호르몬 ABA와 GA의 함량을 분석한 결과, ABA는 고온에 의해 감소하지 않았으며 오히려 대조구에 비해 약간 높은 경향을 보였다. GA는 고온 처리 종료 10일 후부터 대조구의 약 2배로 증가하였으며, 이로 인해 ABA/GA의 비율이 대조구에 비해 감소하였다. 시기별 안토시아닌 생합성 유전자의 발현을 분석한 결과, 초기 생합성 유전자는 고온에 의해 영향을 받지 않았고, 가장 마지막 단계를 조절하는 UFGT의 발현이 고온 처리에 의해 감소하였다. ABA와 GA의 대사 관련 유전자 발현을 분석한 결과, 고온에 의해 ABA의 생합성이 영향을 받지 않았고, GA의 생합성을 유도하는 GA20ox1의 발현이 증가하고 불활성화에 관여하는 GA2ox1/2의 발현이 감소하였다. 따라서 본 연구를 통해 변색 초기의 고온으로 인한 '거봉' 포도의 과피색 불량은 과피의 안토시아닌 생합성이 억제되었기 때문이었고, 안토시아닌 생합성이 ABA의 절대적인 함량 보다는 ABA와 GA의 비율로서 조절되고 있다고 판단되었다.

Regulation of hormone-related genes involved in adventitious root formation in sweetpotato

  • Nie, Hualin;Kim, Sujung;Lee, Yongjae;Park, Hyungjun;Lee, Jeongeun;Kim, Jiseong;Kim, Doyeon;Kim, Sunhyung
    • Journal of Plant Biotechnology
    • /
    • 제47권3호
    • /
    • pp.194-202
    • /
    • 2020
  • The sweetpotatoes (Ipomoea batatas) generate adventitious roots (ARs) from cut stems that develop into storage roots and make for an important means of propagation. However, few studies have investigated the hormones involved in AR development in sweetpotato. In this study, the expression patterns of hormone-related genes involved in AR formation were identified using the transcriptome data. RNA-seq data from stems grown for 0 and 3 days after cutting were analyzed. In addition, hormone-related genes were identified among differentially expressed genes (DEGs) and filtered genes, and cluster analysis was used to characterize expression patterns by function. Most hormone-related regulated genes expressed 3 days after growing the cut stems were abscisic acid (ABA)-related genes, followed by ethylene- and auxin-related genes. For ABA, the biosynthesis genes (including genes annotated to NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3)) and signal transduction and perception genes (including genes annotated to PROTEIN PHOSPHATASE 2Cs (PP2Cs)) tended to decrease. Expression patterns of auxin- and ethylene-related genes differed by function. These results suggest that ABA, auxin, and ethylene genes are involved in AR formation and that they may be regulated in a hormone function-dependent manner. These results contribute to the identification of hormone functions during AR formation and may contribute to understanding the mechanism of AR formation in the sweetpotato.

Transgenic expression of rice MYB102 (OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana

  • Piao, Weilan;Sakuraba, Yasuhito;Paek, Nam-Chon
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.653-658
    • /
    • 2019
  • MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the rapid responses to unfavorable environmental conditions. We recently reported the isolation and characterization of a rice (Oryza sativa) MYB TF, OsMYB102, which is involved in the regulation of leaf senescence by downregulating abscisic acid (ABA) biosynthesis and the downstream signaling response. Based on the similarities of their sequences and expression patterns, OsMYB102 appears to be a homolog of the Arabidopsis thaliana AtMYB44 TF. Since AtMYB44 is a key regulator of leaf senescence and abiotic stress responses, it is important to examine whether AtMYB44 homologs in other plants also act similarly. Here, we generated transgenic Arabidopsis plants expressing OsMYB102 (OsMYB102-OX). The OsMYB102-OX plants showed a delayed senescence phenotype during dark incubation and were more susceptible to salt and drought stresses, considerably similar to Arabidopsis plants overexpressing AtMYB44. Real-time quantitative PCR (RT-qPCR) revealed that, in addition to known senescence-associated genes, genes encoding the ABA catabolic enzymes AtCYP707A3 and AtCYP707A4 were also significantly upregulated in OsMYB102-OX, leading to a significant decrease in ABA accumulation. Furthermore, protoplast transient expression and chromatin immunoprecipitation assays revealed that OsMYB102 directly activated AtCYP707A3 expression. Based on our findings, it is probable that the regulatory functions of AtMYB44 homologs in plants are highly conserved and they have vital roles in leaf senescence and the abiotic stress responses.

Identification and Functional Characterization of the GALACTINOL SYNTHASE (MoGolS1) Gene in Melissa officinalis Plants

  • Kim, Jun-Hyeok;Hossain, Acktar Mohammad;Kim, Na-Hyun;Lee, Dong-Ho;Lee, Ho-Joung
    • Journal of Applied Biological Chemistry
    • /
    • 제54권4호
    • /
    • pp.244-251
    • /
    • 2011
  • Galactinol and rafinose accumulation in plants is associated with stressful environmental conditions such as cold, heat, or dehydration by the action of galactinols synthase (GolS) in the raffinose family of oligosaccharides biosynthetic pathway from UDP-galactose. Moreover, several reports mentioned that GolS transcription is up regulated by various environmental stresses like cold, heat, dehydration. Therefore, to determine whether MoGolS1 was induced with the abiotic stress we analyzed the expression pattern of the gene under various abiotic stresses like heat, cold, abscisic acid, sucrose and salt concentration in the lemon balm plants grown in standard MS medium. The MoGolS1 gene was 981-bp in length encoding 326 amino acids in its sequence and shared 77 and 76% sequence similarity with Arabidopsis thaliana galactinol synthase4 (AtGolS4) and AtGolS1 genes respectively. The MoGolS1 gene was strongly expressed by the abiotic stress induced by sucrose, ABA or heat shock. It was also expressed in responses to cold, Identification and Functional Characterization of the GALACTINOL SYNTHASgene induction with various stresses may be possible for itscrucial function in abiotic stress tolerance in plants, providing a good engineering target for genetic engineering.