• Title/Summary/Keyword: A.C. Servo motor

Search Result 101, Processing Time 0.032 seconds

Position Control of DC Servo Motor Using Neural Network Controller (신경 회로망 제어기를 이용한 직류 서보 전동기의 위치제어)

  • Lee, Joon-Tark;Lee, Kwon-Soon;Lee, Sang-Seuk;Park, Cheul-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.241-243
    • /
    • 1993
  • In this paper, a class of neural-network controllers with two inputs of error and error change, is applied to the position control of D.C. servo system. The proposed controller is learned by error back-propagating error information to compensate the weighting value using its previous derivatives and to decrease exponentially a series of self learning coefficients. Through the simulations and implementations, the effectiveness and superiority to the conventional fuzzy controller is proved.

  • PDF

Modelling and Characteristic Analysis of a Servo Valve using Linear Force Motor (리니어 포스모터를 사용한 서보밸브의 모델링 및 특성해석)

  • Huh, J.Y.;Kim, C.J.;Park, C.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.1-6
    • /
    • 2010
  • Direct Drive Valves (DDV) with electric closed loop spool position control are suitable for electrohydraulic position, velocity, pressure or force control systems including those with high dynamic response requirements. The spool drive device is a permanent magnet linear force motor which can actively stroke the spool from its spring centered position in both directions. This basic study is carried out to drive the design parameters for developing a domestic DDV. The static and dynamic characteristics of DDV are examined. The simulation results are compared with data of manufacture's catalog to show the validity of the modelling.

  • PDF

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

A Study of the tracking of moving object of mobile robot using vision system (비젼시스템을 이용한 이동로봇의 이동물체 추적에 관한 연구)

  • Jeon, Jae-Hyun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3083-3085
    • /
    • 1999
  • This paper presents an algorithm that the mobile robot track accurately a moving object with information from a CCD camera mounted on mobile robot. Singular Value Decomposition is adapted to remove the measurement noise of a Raw data of CCD. The mobile robot estimate the trajectory using Kalman filter and track the path of a moving object with a servo motor. Computer simulation results are showed that the efficient tracking system for the mobile robot is designed properly.

  • PDF

PID Controller and Derivative-feedback Gain Design of the Direct-drive Servo Valve Using the Root Locus and Manual Tuning (근궤적과 수동 조정에 의한 직접 구동형 서보밸브의 PID 제어기 및 미분피드백 이득 설계)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • The direct-drive servo valve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the dc motor. Since the DDV structure is simple, it is less expensive, more reliable, and offers a reduced internal leakage and a reduced sensitivity to fluid contamination. The control system of the DDV is highly nonlinear due to a current limiter, a voltage limiter, and the flow-force effect on the spool motion. The shape of the step response of the DDV-control system varies considerably according to the magnitudes of the step input and the load pressure. The system-design requirements mean that the overshoots should be less than 20%, and the errors at 0.02s should be less than 2%, regardless of the reference-step input sizes of 1V and 5V and the load-pressure magnitudes of 0MPa and 20.7MPa. To satisfy the system-design requirements, the PID-controller parameters of $K_c$, $T_i$ and $T_d$, and the derivative-feedback gain of $K_{der}$ are designed using the root locus and manual tuning.

A design of controller for a SCARA type assembly robot (수평 다관절형 조립용 로보트 콘트롤러의 설계)

  • 고명삼;하인중;김점근;김동일;고낙용;차도현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.1-4
    • /
    • 1987
  • A cotroller is designed and implemented for a 4-axis SCARA type assembly robot. The controller is developed for velocity control and precise position control of the AC servo motor and a robot language SNUL-87 is designed using c-language , which is oriented towards an intelligent robot system.

  • PDF

The Development of a Precision BLDC Servo Position Controller for the Composite Smoke Bomb Rotational Driving System (복합연막탄 선회구동장치를 위한 정밀 BLDC 서보 위치 제어기 개발)

  • Koo, Bon-Min;Park, Moo-Yurl;Choi, Jung-Keyung;Choi, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.951-954
    • /
    • 2005
  • This paper presents a study on the accuracy position Controller design for the Composite Smoke Bomb Rotational driving system using a BLDC servo motor. Function of Smoke Bomb is blind in the enermy's sight so that need to high response. The BLDC servo motor controller was designed with DSP(TMS320VC33), IGBT(Insulated Gate Bipolar. Transistor), IGBT gate driver and CPLD(EPM7128). This paper implements those control with vector control and MIN-MAX PWM. Vector control requires information about rotor positions, a resolver should be used to achieve that. The main controller is implemented with a TMS320VC33 high performance floating-point DSP(Digital Signal Process) and PWM Generator is embodied using EPM7128.

  • PDF

A.C. Servo System Using Fuzzy-Neural Network and PLL (퍼지-신경회로망과 PLL을 이용한 교류서보시스템)

  • 김진식;이현관;엄기환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 1998
  • In this paper, we proposed the hybrid intelligent control method for fast response time and precise speed control of the AC Servo system. The proposed system first used the fuzzy-neural network control methods for fast response time and when the error reaches the preset value, used the PLL control method. In order to verify the advantage of he proposed method, the system is implemented. The results of the simulation and the experiment of speed control to use the 3-phase induction motor as a plant, we verified excellency of the proposed control method to compare with the conventional fuzzy-neural network control method.

  • PDF

A study of the position control of the BALL-HOOP system (BALL-HOOP시스템의 위치 제어에 관한 연구)

  • 주해호;이훈구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.282-285
    • /
    • 1989
  • This paper presents a new algorithm for position control of the BALL-HOOP system driven by th D.C. servo motor-through the micro computer simulation. The Stale Feed back + PID control algorithm is proposed. This algorithm performs that the settling time is faster and overshoot is decreased more remarkably than the PID and the State Feedback algorithm alone. In this simulation the difference equations are used to calculate the output of the control system.

  • PDF

Development of Joystick & Speech Recognition Moving Machine Control System (조이스틱 및 음성인식 겸용 이동기제어시스템 개발)

  • Lee, Sang-Bae;Kang, Sung-In
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • This paper presents the design of intelligent moving machine control system using a real time speech recognition. The proposed moving machine control system is composed of four separated module, which are main control module, speech recognition module, servo motor driving module and sensor module. In main control module with microprocessor(80C196KC), one part of the artificial intelligences, fuzzy logic, was applied to the proposed intelligent control system. In order to improve the non-linear characteristic which depend on an user's weight and variable environment, encoder attached to the servo motors was used for feedback control. The proposed system is tested using 9 words lot control of the mobile robot, and the performance of a mobile robot using voice and joystick command is also evaluated.