• Title/Summary/Keyword: A Single Line-to-Ground Fault

Search Result 96, Processing Time 0.034 seconds

A Fault Analysis on AC Microgrid with Distributed Generations

  • Shin, Seong-Su;Oh, Joon-Seok;Jang, Su-Hyeong;Chae, Woo-Kyu;Park, Jong-Ho;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1600-1609
    • /
    • 2016
  • As the penetration of different types of renewable energy sources (RES) and energy storage systems (ESS) increases, the importance of stability in AC microgrid is being emphasized. Especially, RES and ESS which are operated using power electronics have difference in output characteristics according to control structures. When faults like single-line-to-ground fault or islanding operation occur, this means that a fault should be interpreted in different way. Therefore, it is necessary to analyze fault characteristics in AC microgrid in case of grid-connected mode and standalone mode. In this paper, the fault analysis for AC microgrid is carried out using PSCAD/EMTDC and an overvoltage problem and the countermeasures were proposed.

A Study on the Zone Setting of Digital Distance Relay (디지털 거리계전기의 Zone 설정에 관한 연구)

  • Lee, Jae-Gyu;Jung, Chang-Ho;Jung, Byung-Tae;Ahn, Bok-Shin;Kim, Sok-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.946-948
    • /
    • 1998
  • The distance relay is very important for transmission line protection. A quadrilateral zone shape is used mainly for a modern digital distance relay. The shape of quadrilateral is vendor specific. At the stage of design, the shape is determined considering all possible types of faults and diverse configurations of system. Also this type relay must be designed to avoid the operation by a sound phase at single-Phase-to-ground fault, by a sound phase at two-phase-to-ground fault. The effect of a source impedance and a load impedance is another important factor to design. In this paper, a reliable zone shape which is appropriate for the KEPCO's transmission system is provided.

  • PDF

A Fault Section Detection Method for Ungrounded System Based on Phase Angle Comparison of Zero-Sequence Current (비접지 배전계통에서 영상전류 위상 비교에 의한 고장구간 검출 방법)

  • Yang, Xia;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.31-32
    • /
    • 2007
  • In this paper, a fault section detection method is proposed for ungrounded system in the case of a single line-to-ground fault. A conventional method is used for faulted feeder selection according to the angular relationship between zero-sequence currents of the feeders and zero-sequence voltage of the system. Fault section detection is based on the comparison of phase angle of zero-sequence current. Proposed method has been testified in a demo system by Matlab/Simulink simulations. Based on Distribution Automation System(DAS), Feeder Remote Terminal Unit(FRTU) is used to collect those necessary data, at present a demo system is under developing using Manufacturing Message Specification (MMS) in IEC61850 standard.

  • PDF

An Improved Algorithm of Fault Indicator Generation of FRTU in Distribution Automation System (배전자동화시스템에서 전류방향성을 이용한 단말장치의 고장표시 오류 개선 방법)

  • Seo, Jung-Soo;Kim, Hyung-Seung;Lim, Seong-Il;Choi, Myeon-Song;Lee, Seung-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1354-1363
    • /
    • 2014
  • In this paper, an improved method of fault indicator generation algorithm in FRTUs is proposed for the present Distribution Automation System. In order to find fault area, correct FI information should be generated. But when a single line-to-ground fault occurs, FI information is generated in downside of the fault in some circumstance because existing FI algorithm considers only magnitude. It is found that the upside fault current direction if different from the downside fault current direction. Therefore, in order to prevent to generate the wrong fault indication information for FRTU at the downside of the fault, an improved fault indication generation method is developed. Not only the basic conditions are taken into account, but also the directions from the angle difference between zero and positive sequence currents are considered to generated the fault indication information. In case study, the proposed method has been testified and shown the reasonability in generating correct the fault indication information, for many kinds of faults according to conditions.

A Study on Reclosing Decision on 154kV Combined Transmission Lines (154kV 혼합송전선로 재폐로 결정에 관한 연구)

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1761-1769
    • /
    • 2010
  • This paper describes switching surge analysis on reclosing decision in 154kV combined transmission line with power cables. Reclosing should be operated in combined transmission line based on the technical evaluation because of insulation problem of power cable section. If the surge strikes on power cable, the breakdown can occur at week point of cable insulation. Therefore the detailed analysis is required by considering several conditions such as length ratio of power cable, arrester, fault resistance, charging rate and grounding resistance, etc.. In addition, sheath voltage on IJ(Insulated Joint) is analyzed to confirm the protective level. Simulation is performed by EMTP/ATP. Analysis results show that reclosing can be operated without any special problem by the single line-to-ground fault with fault resistance of $1\Omega$ to $50\Omega$ occurred at the overhead transmission section in 154kV combined transmission lines and trap charge of 100% and 110%.

The Study on the Impulse Characteristic of Secondary Arresters in Power Distribution System (가공 배전선로 중성선과 가공지선 겸용시의 임펄스 특성 연구)

  • Kang, Moon-Ho;Kim, Dong-Myeong;Song, Il-Keun;Chun, Sung-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.297-299
    • /
    • 2004
  • In multi-ground distribution system, overhead ground wire and neutral wire are parallel connected to offer the electrical power energy and protect damage of lightning strokes. Therefore a case where the two wires become single wire, the power company can get the benefit such as installation cost saving and line fault protection by simplify of distribution line. In this paper we describe the result of impulse test in both system ; one is the present power system the other is unified power system parallel connected overhead ground wire and neutral wire. As a result of this impulse test, the present power system get lower impulse voltage than the unified power system.

  • PDF

Simultaneous Quench Analysis of a Three-Phase 6.6 kV Resistive SFCL Based on YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 항형 초전도 한류기의 동시Quench 분석)

  • Sim J;Kim H. R;Hyun O. B
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • We fabricated a resistive type superconducting fault current limiter (SFCL) of 3-phase $6.6 kV_{rms}$ / rating, based on YBCO thin films grown on sapphire substrates with a diameter off inch. Each element of the SFCL was designed to have the rated voltage of $600 V_{rms}$ $/35A_{rms}$. The elements produced a single phase with 8${\times}$6 components connected in series and parallel. In addition, a NiCr shunt resistor of 23 $\Omega$ was connected in parallel to each of them for simultaneous quenches between the elements. Prior to investigating the performance of the 3 phase SFCL, we examined the quench characteristics for 8 elements connected in series. For all elements, simultaneous quenches and equal voltage distribution within 10% deviation from the average were obtained. Based on these results, performance of the SFCL for single line-to-ground faults was investigated. The SFCL successfully limited the fault current of $10 kA_{ rms}$ below 816 $A_{peak}$ within 0.12 msec right after the fault occurred. During the quench process, average temperature of all components did not exceed 250 K, and the SFCL was totally safe during the whole operation.

  • PDF

Stability Analysis of Power System Instal1ed Superconducting Fault Currnt Limiter (고온 초전도 한류기가 설치된 전력 시스템의 안정도 해석)

  • Lee, Sueng-Je;Lee, Chan-Joo;Lee, Chang-Youl;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.346-348
    • /
    • 1998
  • The stability of Power system installed Hi-Tc Superconducting Fault Current Limiter(SFCL) is analyzed as a process of developing SFCL. In interpretation, simple mimic system(only one motor) is assumed and then the circuit with SFCL in system is solved. In case the SFCL is installed in Power system, it protected synchronization more effectively both in symmetrical 3-phase fault and single phase line to ground fault.

  • PDF

Analysis of the Recovery Behavior of SFCL According to Reclosing Operation (재폐로 동작에 따른 초전도 한류기의 회복성능 분석)

  • Ha, Kyoung-Hun;Cho, Yong-Sun;Kim, Deog-Goo;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1073-1077
    • /
    • 2011
  • The breaking capacity of circuit breakers could be no more increased in the electric power system. This is because the fault current increases due to continuous increases in electric power demand and facilities. To solve the problem, it is necessary to come up with an alternative. The superconducting fault current limiter (SFCL) has received an attention among various alternatives. The SFCL effectively reduce a fault current in cooperation with a power circuit breaker. A various types of the SFCL are suggested and a study on them have been progressed. As a result of it, the SFCL can be applyed to the electric power system in the near future. But, a study on recovery behaviors of the SFCL is not enough for applying to the electric power system. If the superconducting elements do not completely recover to the superconducting state after fault operation, it might be a breakdown of the superconducting elements due to heavy power burden and it gives an bad influence on the working of other electric devices. Additionally, the distribution power system has reclosing operation such as open-0.3sec-closed/open-3min-closed/open procedure. So we need to study more about improvement of the recovery behaviors of the SFCL. In this paper, we analyzed the recovery behaviors of a flux-coupling type SFCL according to reclosing operation when a single line-to-ground fault occurred and we compared recovery behaviors of the SFCL with and without a neutral line between secondary reactors and superconducting elements. Also, the flux-coupling type SFCL has advantageous for increases of capacity by controlling the variation in turn ratios between two reactors. Consequently, when the number of turns of the secondary reactors increased, the power burden of the superconducting elements was bigger due to the increase of impedances of the secondary reactors. To distribute the power burden, two superconducting elements connected in series and the balanced quenching of the superconducting elements was induced by connecting a neutral line.

An Improved Method of Fault Indication Information Using Filtering Algorithm (배전자동화 중앙장치에서 필터링 알고리즘을 통한 고장표시 오류 개선방법)

  • Seo, Jung-Soo;Kim, Hyung-Seung;Lim, Sung-Il;Choi, Myeon-Song;Lee, Seung-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1418-1425
    • /
    • 2015
  • In this paper, an filtering method of FI(Fault Indication) information generated by FRTU(Feeder Remote Terminal Unit)s is proposed for the present DAS(Distribution Automation System). In order to find fault area, correct FI information should be generated. But when a single line-to-ground fault occurs, FI information is generated in downside of the fault in some circumstance because existing FI algorithm considers only magnitude. These wrong FI information can be removed by changing existing algorithm. An improved algorithm considers both the direction of zero-sequence current and the phase of three-phase current&voltage. But many FRTUs are distributed in DAS and Changing the algorithm all of FRTU will spend a lot of time and cost. On the other hand, an filtering algorithm proposed in this paper can substitute for it. The filtering algorithm also considers both the direction of zero-sequence current and the phase of three-phase current&voltage. In case study, the proposed method has been shown the reasonability in filtering the fault indication information.