• Title/Summary/Keyword: A/C Compressor

Search Result 285, Processing Time 0.023 seconds

A Study on the Safety Assessment and Damage Pattern of Water Purifier Compressors (정수기용 압축기의 안전성 평가 및 소손 패턴 분석에 관한 연구)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • The purpose of this study is to provide basic data for the safety assessment of a water purifier when water leaks due to inappropriate maintenance and the examination of the cause of accidents related to the leak. Due to its inspection and management by non-specialists, if a leak occurs in a water purifier with the water level controller being inclined, it may result in the failure of the compressor, power supply line, PCB, etc. The analysis of the thermal diffusion pattern of water purifier compressors using a thermal image camera shows that its maximum temperature was approximately $80^{\circ}C$. In addition, its operating current was a maximum of 13 A and the system's operating current was approximately 1.7 A after the compressor was charged. It was found that the housing type power cable cover of the compressor had the effect of preventing electric shock but has poor flame resistance. Furthermore, the performance of the overload protector, PTC relays, etc., was excellent but they have potential for problems as metallic terminals were exposed, resulting in the potential of a safety related accident. The terminals and their surface damaged by the tracking showed a trace of carbonization and the resistance between terminals was measured to be approximately $8{\Omega}$. In addition, while the tracking was proceeding, the fuse and circuit breaker installed for system protection did not operate.

Performance Characteristics of a Drop-in System for a Mobile Air Conditioner Using Refrigerant R1234yf (냉매 R1234yf 적용 자동차용 에어컨 Drop-in 성능 특성)

  • Cho, Honghyun;Lee, Hoseong;Park, Chasik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.823-829
    • /
    • 2012
  • In this study, the performance of mobile air conditioner(MAC) systems to which the refrigerants R134a and R1234yf were used was evaluated to compare the characteristic of automotive refrigeration cycles with refrigerant. The experimental setup of a MAC consists of an belt driven compressor, a condenser, an evaporator and a block type thermal expansion valve. The drop-in test on MAC were carried out under variable compressor speed from 800 to 2500 rpm. Performance test by using R1234yf and R134a in the same system revealed low the charge amount and mass flow rates for using R1234yf, that is, up to 10% and 17%, respectively. The compressor discharge temperature of R1234yf is $8^{\circ}C$ lower than that of R134a. The cooling capacity with R1234yf system decreased by 4~7% compared with R134a system. In addition, The COP of R1234yf system is lower 3~4% than that of R134a system.

A Study on a High-Temperature/High-Pressure Washing System in which High-Temperature Water is Generated in a Low-Pressure Boiler and High-Pressure Water is Generated Thereafter in a Compressor (저압보일러에서 고온의 온수 생성 후 압축기에서 고압수를 생성하는 고온·고압 세척시스템에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2019
  • This study was conducted on a high-temperature/high-pressure washer in which low-pressure cold water in a boiler is heated to a temperature range of $70{\sim}80^{\circ}C$ by supplying diesel combustion heat. The high-temperature water is sent to a compressor to increase its pressure to 200 bar, thereby making high-temperature/high-pressure water, which is sprayed through a spray nozzle. In the results of this study, the spray temperature of the high-pressure washing was shown to be the highest when the ratio between the actual amount of combustible air and the theoretical amount of air was 1:1 and the energy consumption rate of the low-pressure boiler type high-pressure washer was shown to be much lower than that of the high-pressure boiler type high-pressure washer.

Experimental Study on the Performance of a $CO_2$ Heat Pump Water Heater ($CO_2$ 급탕 열펌프의 성능 특성에 관한 실험적 연구)

  • Lee, Eung-Chan;Baek, Chang-Hyun;Kang, Hoon;Kim, Yong-Chan;Cho, Hong-Hyun;Cho, Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.367-372
    • /
    • 2009
  • The performance of a $CO_2$ heat pump water heater was measured with a variation of operating conditions such as refrigerant charge amount, outdoor temperature, compressor frequency, EEV opening, and water mass flow rate. The optimum refrigerant charge amount of the $CO_2$ system was 1800 g. At water mass flow rates of 75, 85, and 95 kg/h, the water heating temperatures were 74, 67, and $62^{\circ}C$ and COPs were 2.6, 2.8, and 3.0, respectively. Besides, the compressor frequency and water mass flow rate were adjusted to maintain the water heating temperature at $60^{\circ}C$ with the decrease of outdoor temperature. As the outdoor temperature decreased by $5^{\circ}C$, the compressor frequency increased beyond 60 Hz and the water mass flow rate decreased by 16.7%.

Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(III) - Operating Characteristics of a Vapour Compression type Heat Pump Using Alternate Refrigerant - (엔진구동 지열 열펌프의 성능 분석(III) - 대체냉매를 이용한 증기압축식 열펌프의 운전특성 -)

  • 김영복;이승규;김성태;송대빈;강호철
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.513-522
    • /
    • 1999
  • This study was performed to get the optimal operating conditions of an water-air compact heat pump system using R-134a. The experiments was done for three elvels of the air mass flow rate and the compressor driving speed during air-heating process. The temperature of the air at the condenser inlet and outlet was 17~23$^{\circ}C$, 36~44$^{\circ}C$, respectively. The average temperature of the refrigerant at the evaporator and condenser was 1$0^{\circ}C$, 6$0^{\circ}C$, respectively. The temperature of the refrigerant was not depending on the air mass flow rate and the compressor driving speed. The pressure of the refrigerant at the condenser inlet and outlet was ranged of 10~18.5kg/$\textrm{cm}^2$ and that at the evaporator was ranged of 3.1~3.3kg/$\textrm{cm}^2$. The pressure drop at the condenser and evaporator was about 1.5, 1.2 kg/$\textrm{cm}^2$, respectively. The performance of coefficient for air heating was about 3.3~4.0.

  • PDF

Simulation of Compression/Absorption Hybrid Heat Pump System using Industrial Wastewater Heat Source (산업폐수열원 이용 증기압축식/흡수식 하이브리드 히트펌프 시스템의 시뮬레이션)

  • Baik Young-Jin;Park Seong-Ryong;Chang Ki-Chang;Ra Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1117-1125
    • /
    • 2004
  • In this study, in order to utilize the waste heat of industrial wastewater in the range of the relatively low temperature of 40~5$0^{\circ}C$ as a heat source, a hybrid heat pump system was considered by computer simulation method. In the simulation, an absorber, desorber and solution heat exchanger were modelled by UA values while a compressor and pump performance were specified by an isentropic efficiency. Simulation results show that the performance of hybrid heat pump can be up to 80% higher than that of conventional R134a heat pump when it makes a process hot water of 9$0^{\circ}C$ while the wastewater is cooled down to 2$0^{\circ}C$. As the absorber pressure increases, the system performance and deserter pressure increase with a favorable effect of a compressor discharge gas temperature drop.

A Study on the Performance of HCFC22 and Alternative Refrigerants in Heat Pumps (열펌프를 이용한 R22대체 혼합냉매의 성능에 관한 연구)

  • Song, Y.J.;Jung, D.G.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 1998
  • This paper is concerned about the performance of HCFC22 alternative refrigerants used in heat pumps and industrial chillers. A water-to-water breadboard heat pump with counter-current heat exchangers and a hermetic compressor was built to carry out the experiments with various refrigerants. For each test, more than 40 temperatures, 4 pressures, power input, mass flow rates of the heat transfer fluids were measured. Refrigerants tested were HCFC22, R290(Propane), an azeotrope of 45%Propane/55%R134a mixture, and a nonazeotropic mixture of Calor 50. All tests were conducted under ARI test A condition. It is found that the COP and capacity of propane were 18% and 2.5% higher than those of HCFC22 while the COP and capacity of 45%Propane/55%R134a mixture were 3.5% and 5.3% higher than those of HCFC22 respectively. Also the COP and capacity of Calor 50 were 17% and 7.8% higher than those of HCFC22. Compressor discharge temperatures of alternative refrigerants were roughly $35^{\circ}C$ lower than that of HCFC22 indicating that these refrigerants are good from the view point of compressor reliability. The charging amounts for the alternative refrigerants were reduced by 40-60% as compared to that of HCFC22. Overall, it can be said that hydrocarbon containing alternative refrigerants are excellent in thermodynamic performance but should be used with considerable care due to their flammability.

  • PDF

An Experimental Investigation of Thermodynamic Performance of R-22 Alternative Blends

  • Kim, Chang-Nyeon;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.36-44
    • /
    • 1998
  • R-410a and R-407c which have the best potential among R-22 alternatives were tested as drop-in refrigerants against a set of R-22 baseline tests. The performance evaluations were carried out in a psychometric calorimeter test facility using the residential spilt type air conditioner under the ARI rating conditions. Except the lubricant and hand-operated expansion valve, the other parts of the air conditioner were the same with the commercial system. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly charged into the current refrigeration system because its vapor pressure and other thermochemical properties are similar to those of R-22. However, it is required to change the volume flow rate of compressor in order to achieve the volumetric capacity of R-22. This results from its relatively small VCR and capacity. Meanwhile, R-410a has vapor pressure values too high to be substituted for the current system and this resulted relatively low COP of R-410a compared to that of R-22.

  • PDF

The Performance Evaluation of R407C and R410B in a Residential Window Air-Conditioner

  • Kim, Man-Hoe;Shin, Jeong-Seob;Kim, Kwon-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.148-157
    • /
    • 1998
  • This study presents test results of a residential window air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests has been carried out for the basic and liquid-suction heat exchange cycles in a psychometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-suction heat exchange cycle was also considered to improve the system performance. Test results were compared with those for the basic R22 system. The modified system with a liquid-suction heat exchanger increased cooling capacity and energy efficiency by up to 5%.

  • PDF

Study of Compressor-Performance Improvement in Automotive Air-Conditioning System (자동차용 에어컨 압축기의 성능 향상에 대한 연구)

  • Kim, Young Shin;Yoo, Seong Yeon;Na, Seung Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.713-718
    • /
    • 2015
  • The purpose of this study is to realize compressor-performance improvements in the fuel economy of an automotive air-conditioning system. We conduct cooling performance tests in a compressor calorimeter test stand. To improve the cooling performance, we investigate the increase in the suction flow rate and the decrease in the discharge dead volume. Based on the results of the test, we found that the cooling capacity and the coefficient of performance (COP) of the compressors were improved as follows. The cooling performance improved greater at high speeds than low speeds in the case of an increase in the suction flow rate increase, and it improved more at low speeds than at high speed when there was a decrease in the discharge dead volume. When both of the above factors were included, we observed that the improvement effects were generally balanced for both high- and low-speed modes, and there was a significant improvement in the discharge temperature. The improvement was found to be about 3.2% at low speed, 8.3% at high speed during in cooling performance improvement, about 5.8% at low speed and about 6.2% at high speed in COP improvement, and there was a decrease of about $3^{\circ}C$ at low speed and a $5^{\circ}C$ decrease at high speed in discharge temperature.