• Title/Summary/Keyword: 90 MPa

Search Result 358, Processing Time 0.024 seconds

Optimum Conditions for Tobacco Seed Priming by PEG 6000

  • Tai-Gi, Min;Byung-Moon, Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.263-266
    • /
    • 1999
  • Tobacco (Nicotiana tabacum L. ‘KF109’) seeds were primed in polyethylene glycol 6000 (PEG 6000) solutions to determine a) what osmotic potential of the solution would be optimal for priming, i.e., critical potential level for preventing germination, and b) what temperature and duration would be the most effective in priming. The germination was completely prevented below -0.8 MPa of PEG 6000, that indicates a optimum water potential for seed priming. Seeds were primed for 0, 1, 2, 3, 5, 10 and 15 days at 15, 20 and $25^{\circ}C$, respectively, under the-0.8 MPa PEG 6000 solution to find out the most effective temperature and duration for priming. The effectiveness of priming, particularly in germination speed, was observed more distinctly when the primed seeds were germinated at 15$^{\circ}C$ than 2 5$^{\circ}C$. The greatest reduction of the time to 50% germination (T/sob 50/) was when the seeds were primed at $25^{\circ}C$. The reduction rate of the $T_{50}$ was rapid when primed from 1 day to 8 days and then slowed down in the seeds primed for longer than 8 days. The time from 10 to 90% germination ( $T_{10-90}$ increased in the primed seeds for longer than 8 days which showed the reversed effect of synchronous germination. However, $T_{50}$ was reduced continuously in the seeds even primed over 8 days. Thus, the optimum condition for tobacco seeds priming with PEG 6000 solution was -0.8 MPa in osmotic potential of the solution at $25^{\circ}C$ for 8 days.ays.

  • PDF

Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties (연속 유리섬유 강화 폴리유산 복합재료의 제조 및 물성)

  • Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.230-234
    • /
    • 2013
  • The continuous glass fiber reinforced poly-lactic acid (PLA) composite was manufactured by direct melt impregnation. The mechanical and thermal properties of continuous glass fiber reinforced PLA composite were observed. Measured properties were compared with the reference values of neat PLA and the injection molded glass fiber/ PLA composite. The continuous glass fiber reinforced PLA composite having a fiber volume fraction of 27.7% shows enhanced tensile strength of 331.1 MPa, flexural strength of 528.6 MPa, and flexural modulus of 24.0 GPa. The enhanced heat deflection temperature (HDT) and the increased cystallinity were also observed. The degree of impregnation as a function of pulling speed was also assessed. The degree of impregnation at the pulling speed of 5 m/min was over 90% in this research.

A Study on the Reaction -Bonding and Gas Pressure Sintering of Si Compact made by Pressureless Powder Packing Method (무가압 분말 충전 성형법에 의해 제조된 Si 성형체의 반응 소결과 가스압 소결에 관한 연구)

  • 박정현;강민수;백승수;염강섭
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1414-1420
    • /
    • 1996
  • Using Si powder with average particle size of 8${\mu}{\textrm}{m}$ Si compacts were formed by pressureless powder packing method. The compacts were reaction bonded at 1350, 140$0^{\circ}C$ for 3~35 hrs under N2/H2 atmosphere and its microstructures were examined. Reaction bonded silicon nitrides showed nitridation of 90% and relative density of 88% After the impregnation of 5wt% MgO as sintering additive using aqueous solution of Mg nitrate the Si compacts were reaction bonded at 140$0^{\circ}C$ for 15hrs. The reaction bonded bodies were gas pressure sintered at 180$0^{\circ}C$ 190$0^{\circ}C$ 200$0^{\circ}C$ for 150, 300min. They showed relative density of 95% bending strength of 600MPa and fracture toughness of 6 MPa.m1/2.

  • PDF

Influence of Steel Fiber Volume Ratios on Workability and Strength Characteristics of Steel Fiber Reinforced High-Strength Concrete (강섬유 혼입율이 강섬유보강 고강도 콘크리트의 작업성과 강도특성에 미치는 영향)

  • Kim, Yoon-Il;Lee, Yang-Keun;Kim, Myung-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.75-83
    • /
    • 2008
  • In this paper, concrete material tests were carried out to investigate influence of steel fiber volumn ratios on variations of workability and strength characteristics of steel fiber reinforced high-strength concrete, $50MPa{\sim}90MPa$ of compressive strength, according to increase of fiber volume. Test specimens were arranged with six levels of concrete compressive strength and fiber volumn ratios, 0.0%, 0.5%, 1.0%, 1.5%, 2.0%. The test results showed that steel fiber reinforced high-strength concrete($70MPa{\sim}90MPa$, 1.5% fiber volumn ratio) with good workability of slump 20cm could be used practically and effects of steel fiber reinforcement in improvement of concrete strength and toughness characteristics such as splitting tensile strength, flexural strength, and diagonal tensioned shear strength, were more distinguished in high-strength concrete than general strength concrete. And the test results indicated that splitting tensile strength of fiber reinforced concrete was proportioned to the product of steel fiber volumn ratios, $V_f(%)$ and sqare root of compressive strength, $\sqrt{f_{ck}}$, and the increasing rate was in contrast with that of flexural strength, and increase of diagonal tensioned shear strength was remarkable at steel fiber volumn ratio, 0.5%.

Optimal Structural Design for the Electro-magnectic Launcher (전자력 발사기의 최적 구조 설계)

  • 이영신;안충호
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 1996
  • The optimal design for Electro-magnetic Launcher (EML : Rail Gun) considering structural and electrical constraints are presented. For the structure of EML under high pulsed currency, the cross section is minimized subject to maximum stress of each element(rail, side wall, ceramic, and steel) within allowable stress and preload limits. The electrical constraint is the effective ceramic thickness which prevents the eddy current effect reducing the performance of EML. The stress analysis and optimization procedure of 90mm EML is conducted with ANSYS Code. The optimal design under preload is reduced to 53% of area compared with optimal design without preload. In case of rail with arc angle .theta.=45.deg., the performance of EML is the best among the other rail arc angles. The optimal design for rail with arc angle .theta.=45.deg., results in the reduction of 9% of area and 10.4% of deformation compared with Fahrenthold's design. The optimal preload 59.8MPa is much lower than Fahrenthold's design(186MPa). The results show that the optimal design of EML meets the design requirements.

  • PDF

TENSILE STREGNTH BETWEEN MACHINABLE CERAMIC AND DENTIN CEMENTED WITH LUTING COMPOSITE RESIN CEMENTS (합착용 복합레진시멘트로 합착한 Machinable Ceramic과 상아질 사이의 인장강도에 대한 실험적 연구)

  • Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.487-501
    • /
    • 1998
  • In the case of CAD/CAM ceramic inlay restorations, if isthmus width is widened too much, it may cause fracture of remaining tooth structure or loss of bonding at the luting interface because of excessive displacement of buccal or lingual cusps under occlusal loads. So to clarify the criterior of widening isthmus width, this study was designed to test the tensile bond strength and bond failure mode between dentin and ceramic cemented with luting composite resin cements. Cylindrical ceramic blocks(Vita Cerec Mark II, d=4mm) were bonded to buccal dentin of 40 freshly extracted third molars with 4 luting composite resin cements(group1 : Scotchbond Resin Cement/Scotchbond Multi-Purpose, group2 : Duolink Resin Cement/ All-Bond 2, group3: Bistite Resin Cement/Ceramics Primer, and group4:Superbond C&B). Tensile bond test was done under universal testing machine using bonding and measuring alignment blocks(${\phi}ilo$ & Urn, 1992). After immersion of fractured samples into 1 % methylene blue for 24 hours, failure mode was analysed under stereomicroscope and SEM. Results: The tensile bond strength of goup 1, 2 & 4 was $13.97{\pm}2.90$ MPa, $16.49{\pm}3.90$ MPa and $16.l7{\pm}4.32$ MPa, respectively. There was no statistical differences(p>0.05). But, group 3 showed significantly lower bond stregnth($5.98{\pm}1.l7$ MPa, p<0.05). In almost all samples, adhesive fractures between dentin and resin cements were observed. But, in group 1, 2 & 4, as bond strength increased, cohesive fracture within resin cement was observed simultaneously. And, in group 3, as bond strength decreased, cohesive fracture between hybrid layer and composite resin cement was also observed. Cohesive fracture within dentin and porcelain adhesive fracture were not observed. In conclusion, although adhesive cements were used in CAD/CAM -fabricated ceramic inlay restorations, the conservative priciples of cavity preparation must be obligated.

  • PDF

Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite (에폭시 강화 리그닌 기반 나노탄소섬유 복합재료의 특성)

  • Youe, Won-Jae;Lee, Soo-Min;Lee, Sung-Suk;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.406-414
    • /
    • 2016
  • The lignin-based carbon nanofiber reinforced epoxy composite has been prepared by immersing carbon nanofiber mat in epoxy resin solution in order to evaluate the physical and mechanical properties. The thermal and mechanical properties of the carbon nanofiber reinforced epoxy composite were analyzed using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and tensile tester. It was found that the thermal properties of the carbon nanofiber reinforced epoxy composite improved, with its glass-transition temperature ($T_g$) increased from $90.7^{\circ}C$ ($T_g$ of epoxy resin itself) to $106.9^{\circ}C$. The tensile strengths of carbon nanofiber mats made from both lignin-g-PAN copolymer and PAN were 7.2 MPa and 9.4 MPa, respectively. The resulting tensile strength of lignin-based carbon nanofiber reinforced epoxy composite became 43.0 MPa, the six times higher than that of lignin-based carbon nanofiber mats. The carbon nanofibers were pulled out after the tensile test of the carbon nanofiber reinforced epoxy composite due to high tensile strength (478.8 MPa) of an individual carbon nanofiber itself as well as low interfacial adhesion between fibers and matrices, confirmed by the SEM analysis.

Spalling of Concrete with Compressive strength and heating rates (압축강도 및 가열속도에 따른 콘크리트의 폭렬성상)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Hwang, Ui-Chul;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.43-44
    • /
    • 2015
  • In this study, spalling property were evaluated from concrete with compressive strengths of 30MPa, 90MPa, 180MPa, applied with fast heating condition(ISO-834 standard heating curve) and slow heatign condition(1℃/min). As a result, the spalling property of concrete was shown differently with compressive and heatign rate. And It could be separated three as non spalling, surface spalling and explosive spalling.

  • PDF

Application of Fracture Mechanics to Design of Machine and Structure Element (파괴역학을 이용한 기계요소 및 구조물 설계방안 (5))

  • Lee, Eok-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.13-21
    • /
    • 1987
  • 4-4 품질관리 품질관리에는 세가지의 중요한 스텝이 있다. 첫째는 소요자재의 관리, 두째는 공장에서 조립할때의 관리, 세째는 출고관리이다. 특수 파괴설계방법론을 이 모든 과정들에 적용시켜야 할 것이다. 4-4-1 수입자재의 품질 자재들을 매입 혹은 수입할 경우에 검사하여야 할 여러가지 가 있다. 1 재료를 매입할 때 성질들이 얼마나 균일한가\ulcorner 2 최소 인성치는 얼마로 보증되어 있는가\ulcorner 3 재료들을 선별하여 거절하느나, 수락하느냐를 결정하기 위하여 어떠한 비파괴 검사법을 사용하느나\ulcorner 수입재료들에 대해서 파괴측정 시험을 해보면 실험방법이나 재료종류들에 관련되어서 실험데이타들에 전형적인 산포현상이 나타나게 마련이다. 예를들어보면 항복응력이 1400Mpa인 퀘칭하여 켐퍼링한 강의 공칭 파괴인성치는 $_{4}$는 90Mpa .root. m 일 수도 있고 60Mpa .root. m일 수도 있다. 아래 그림에 이 현상을 예시하였다. 파괴문제가 중요시 되는 부품에 대해서는 특수하게 파괴인성치를 규정하여 재료를 구입하여야 한다.

  • PDF

Autofrettage of Fuel Injection Pipe for Diesel Engine (디젤엔진 연료분사관의 자긴가공)

  • Koh, S.K.;Song, W.J.;Seo, K.S.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.90-95
    • /
    • 2007
  • In order to investigate the optimum condition of the autofrettage process for the diesel engine injection pipe, different values of autofrettage pressure, pressure rising time, pressure holding time, and repetition of autofrettage process were applied. Autofrettage was preformed by applying the hydrostatic internal pressures of 603 MPa, 535 MPa, 500 MPa on the fuel injection pipe, corresponding to theoretically 50%, 30%, and 20% overstrain levels, respectively. The autofrettage residual stresses in the injection pipe were experimentally determined by using X-ray diffractometer. As the overstrain level increased, the magnitude of compressive residual stress at the bore increased. It was found that the rising time to reach the autofrettage pressure, holding time at the autofrettage pressure, and repeating application of the autofrettage pressure on the pipe had no significant influence on the residual stress distributions.

  • PDF