• Title/Summary/Keyword: 9%Ni steel

Search Result 119, Processing Time 0.027 seconds

Diaphragm-Type Pressure Sensor with Cu-Ni Thin Film Strain Gauges-I: Development of Cu-Ni Thin Film Strain Gauges (Cu-Ni 박막 스트레인 게이지를 이용한 다이어프램식 압력 센서-I: Cu-Ni 박막 스트레인 게이지 개발)

  • 민남기;이성래;김정완;조원기
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.938-944
    • /
    • 1997
  • Cu-Ni thin film strain gauges for diaphragm-type pressure sensors were developed. Thin films of Cu-Ni alloys of various compositions were deposited onto glass and stainless steel substrates by RF magnetron sputtering. The effects of composition substrate temperature Ar partial pressure and aging on the electrical properties of Cu-Ni film strain gauges in the thickness range 500~2000$\AA$ are discussed. The maximum resistivity(95.6 $\mu$$\Omega$cm) is obtained from 53wt%Cu-47wt%Ni films while the temperature coefficient of resistance(TCR) becomes minimum(25.6ppm/$^{\circ}C$). The gauge factor is about 1.9.

  • PDF

The Effect of Ball-milling Energy on Combustion Synthesis Coating of Cu-Al-Ni Based Intermetallics (Cu-Al-Ni계 금속간화합물의 연소합성 Coating에 미치는 Ball Mill처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The possibility of Cu-Al-Ni intermetallic coating on the mild steel through the combustion synthesis has been investigated. In particular, the effect of the ball milling energy on the microstructure of the coating layer was examined to obtain the best coating condition. Experimental results show that Cu-Al-Ni powder compact was explosively synthesized and successfully coated with the steel matrix. It was revealed that the formation of $Cu_9Al_4$ intermetallic decreased with increase in the ball milling energy. This result supports that the high energy ball milling would be effective for obtaining the most suitable microstructure for Cu-Al-Ni coating layer. However, the excessive ball milling energy seems to decrease the bonding strength between the coating layer and the matrix.

A study on the electrom beam weldability of 9%Ni steel (II) - Effect of $a_b$ parameter on bead shape - (9%Ni 강의 전자빔 용접성에 관한 연구 II -비이드형상에 미치는$a_b$parameter의 영향)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 1997
  • Welding defects, such as porosity and spike, have sometimes occurred in deep penetration electron beam welds. These defects are known to be one of the serious problem in electron beam welds. So, effects of active parameters ($a_b$) on bead shape and occurrence of defects in electron beam welds of heavy section 9%Ni steel plates were investigated. Partial penetration welding in flat position, and deep penetration welding of 10 ~ 28mm depth were investigated in this study. It is desirable to select low accelerating voltage and above the surface focus position $a_b$$\geq$1.2 at which a wine-cup shaped bead is obtained to avoid the welding defects such as spike and root porosity. When the accelerating voltage of electron beam was low (90kV), active parameter ($a_b$) did not influence on the bead width, penetration depth and weld defects significantly. However, in case of high voltage ($\geq$120kV), active parameter ($a_b$) was sensitively associated with penetraton depth and weld defects, i.e. when the active parameter (($a_b$) was in the range of 0.6 to 1.0, the depth of penetration was always over the target (23mm), while the depth of penetration was dramatically decreased with further increase of active parameter ($a_b$). The weld defects were decreased with the increase of active parameter $a_b$ resulting in the decrease of energy density of the focused beam in the root part of fusion zone.

  • PDF

Corrosion of Fe-Cr Steels at 600-800℃ in NaCl Salts

  • Lee, Dong Bok;Kim, Min Jung;Yadav, Poonam;Xiao, Xiao
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.354-359
    • /
    • 2018
  • NaCl-induced hot corrosion behavior of ASTM T22 (Fe-2.25Cr-1Mo), T91 (Fe-9Cr-1Mo), T92 (Fe-9Cr-1.8W-0.5Mo), 347HFG (Fe-18-Cr-11Ni), and 310H (Fe-25Cr-19Ni) steels was studied after spraying NaCl on the surface. During corrosion at $600-800^{\circ}C$ for 50-100 h, thick, non-adherent, fragile, somewhat porous oxide scales formed. All the alloys corroded fast with large weight gains owing to fast scaling and destruction of protective oxide scales. Corrosion rates increased progressively as the corrosion temperature and time increased. Corrosion resistance increased in the order of T22, T91, T92, 347HFG, and 310H, suggesting that the alloying elements of Cr, Ni, and W beneficially improved the corrosion resistance of steels. Basically, Fe oxidized to $Fe_2O_3$, and Cr oxidized to $Cr_2O_3$, some of which further reacted with FeO to form $FeCr_2O_4$ or with NiO to form $NiCr_2O_4$.

Comparative Study of Ni effect on the Corrosion Behavior of Low Alloy Steels in FGD and Acid Rain Environments (산성비 및 배연탈황설비 환경에서 Ni 첨가에 따른 저합금강의 내식성 비교연구)

  • Han, Jun-Hee;Nguyen, Dang-Nam;Jang, Young-Wook;Kim, Jung-Gu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.558-566
    • /
    • 2009
  • The alloying effect of a small amount of nickel on low alloy steel for application to flue gas desulfurization(FGD) systems was studied. The structural characteristics of the rust layer were investigated by scanning electron microscopy(SEM). The electrochemical properties were examined by means of potentiostatic polarization test, potentiodynamic polarization test, and electrochemical impedance spectroscopy(EIS) in a modified green death solution of 16.9 vol.% $H_2SO_4$+0.35 vol.% HCl at $60^{\circ}C$ and an acid rain solution of $6.25{\times}10^{-5}M\;H_2SO_4+5.5{\times}10^{-3}M\;NaCl$ at room temperature. It was found that as the amount of nickel increased, the corrosion rate increased in the modified green death solution, which seemed to result from micro-galvanic corrosion between NiS and alloy matrix. In acid rain solution, the corrosion rate decreased as the amount of nickel increased due to the repulsive force of $NiFe_2O_4$ rust against $Cl^-$ ions by electronegativity.

Evaluation of corrosion resistance by electrochemical method for Ni-Cr-Mo-V steel (Ni-Cr-Mo-V강의 전기화학적 방법에 의한 내식성 평가)

  • Kwon, Jae-Do;Moon, Yun-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1422-1431
    • /
    • 1997
  • When the structures are exposed to their own an application for a long period, a number of variables such as strength properties and corrosion resistance, so on are expected to change. In the present investigation the corrosion behavior and resistance for the original and degraded materials of Ni-Cr-Mo-V steel were evaluated under the conditions of pH 3, 6, 9 and 12 in a distilled water environment. The electrochemical polarization technique was employed in this investigation. Based upon the experimental results obtained, the following conclusions were drawn. A severe and uniform corrosion was observed for both original and degraded materials under the condition of pH 3. At pH 6 and pH 9, these materials showed the degradation by a pitting corrosion. The materials under pH 12 environment were degraded by a uniform corrosion. The corrosion rate per year were the highest in the pH 3 environment, followed by pH 12, pH 6 and pH 9 environment in order. The corrosion resistance was decreased from the original material, slow cooled material (10.deg. C/hr) and step cooled material in order.

A Study on the Structual Integrity of Stress Concentration Region Caused by Welding Discontinuity for Construction of 9 % Ni Steel of LNG Storage Tank Internal (9% Ni강 LNG 저장탱크 내조의 시공에 따른 용접부의 불연속으로 인한 응력 집중부 구조 건전성에 대한 연구)

  • Lee, Young-Min;Lee, Young-Shin;Lee, Sung-Jin;Kim, Young-Kyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.579-582
    • /
    • 2011
  • 본 논문에서는 9 % Ni강 LNG 저장탱크 조사를 통해서 유한요소해석을 수행하여 구조건전성을 평가하였으며 실용에서 활용할 수 있는 자료를 제시하였다. 과거의 LNG 저장탱크의 설계는 2차원 선에서만 유한요소해석이 수행되었으나 보다 진보된 하드웨어와 소프트웨어의 발전으로 3차원 유한요소해석이 가능케 되었다. 본 연구에서는 9 % Ni 강 LNG 저장탱크 내조의 정적 구조 해석이 상용 유한 요소 해석 프로그램인 ABAQUS를 통해 수행되었다. LNG 저장 탱크 내조 시공 시 용접부 형상을 참고하여 용접부 모델을 고려한 해석을 각각 수행하였다. 용접부의 탄성계수의 변화를 통하여 최대응력과 최대변위를 계산하였다. 실제 LNG tank의 운용 시 발생하는 하중은 자중과, 수두 압과, 온도차에 의한 열응력이며 이들이 복합적으로 작용하였을 시, 용접선을 고려하지 않은 모델에 대해서는 최대응력이 207 MPa이며, 동일 조건에서 용접선을 포함한 모델에 대해 해석을 수행한 결과로서 최대응력이 그보다 약 100 MPa 정도 상승한 결과가 나타났다. 하중조건에서 온도차에 의한 열응력을 고려함과 고려하지 않음을 비교함으로서 실제 열응력에 대해서는 내조에 큰 영향을 미치지 않음을 확인하였다.

  • PDF

A Safety Assessment for 140,000kl $9\%$ Ni Steel Type LNG Storage Tank (140,000kl $9\%$니켈강식 액화천연가스 저장탱크의 안전성 평가)

  • Lee Su Kyung,;Yang Byung Dong,
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.57-62
    • /
    • 2004
  • This study is to assess the safety of the process facilities and fire fighting facilities for LNG storage tank which is the main facility in the LNG receiving terminal. The LNG storage tank(capacity : 140,000kl, type : aboveground, inner tank $9\%$ Ni steel plate, outer tank : prestressed concrete) was designed by foreign country up to now, but it has designed by domestic technology as the fifth in the world is under construction now.

  • PDF

Impurity Pick-Up for the Preparation of NiCuZn Ferrite Powder Using Ball Milling Process (NiCuZn Ferrite 분말제조에 있어서 Ball Mill 분쇄 공정 중에 혼입되는 불순물의 함량)

  • 고재천;류병환
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • The pick up impurity was studied for preparing the NiCuZn ferrite powder by a ball milling method that usually uses in the industrial ceramic process. The raw materials of NiO, CuO, ZnO, and $Fe_2O_3$ powder were weighted according to various spinel composition and mixed for 18 hrs by a wet ball milling method after that the slurry was followed by spray dried and calcined at $700^{\circ}C$ 3 hrs. The calcined NCZF powder was finally ball milled during 65 hrs as same method. The stainless steel ball and jar are used as mixing and milling equipment and the solid concentration of the slurry was 25 vol%. The impurities, stainless steel pickup, were effected by the composition of raw materials especially iron oxide, nickel oxide in the mixing process and by the rate of calcine of NiCuZn ferrite in final milling process. The empirical equation of stainless steel pickup was driven in the wet ball milling system. Finally, the composition of NiCuZn ferrite could be controlled by the empirical equation.

  • PDF