• Title/Summary/Keyword: 80MPa 고강도 콘크리트

Search Result 90, Processing Time 0.029 seconds

A Experimental Study on the Fire Resistant Performance of the High Strength Concrete with Loading and Unloading test (재하 및 비재하 내화 실험을 통한 고강도콘크리트의 내화성능에 관한 실험적 연구)

  • Kim, Woo-Jae;Kim, Hyun-Bae;Kim, Kyu-Yong;Kim, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.61-64
    • /
    • 2009
  • Recently, the higher buildings are, the stronger concrete are used. Ultra high strength concrete have the possibility of spalling when a fire breaks out. so the fire-resistance performance is necessary to use the ultra high strength concrete on the high-rise building. On this study, the heating test for the concrete with loading/unloading is performed for ultra high strength concrete using nylon fiber. The heating test followed by ISO-834 heating curve on the real-size specimen and the strength of concrete are 60, 80, 100, 200 MPa.

  • PDF

Evaluation for Ultimate Flexural Strength of Steel Composite Girder with High Strength Concrete (고강도 콘크리트 강합성 거더의 극한휨강도 실험 평가)

  • Kim, Woon Hak;Lee, Juwon;Lee, Seokmin
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.796-805
    • /
    • 2020
  • Purpose: A static loading test was performed to evaluate the ultimate flexural strength of a girder in which 80MPa high-strength concrete was synthesized on the compressive flange of the I-shape steel girder. Method: This test is designed and fabricated two types of specimens with different shear-connection specifications, and evaluated their ultimate flexural behavior until reaching the extreme event limit states. In addition, the ultimate strength was evaluated by comparing the test results and the results of the strain compatibility method. Result: By confirming the displacement within 0.02mm as a result of the relative slip measurement, it was verified that the two specimens secured perfect bonding. Therefore, the difference in the shear specification does not have a great effect on the stiffness, and if the specimens are completely synthesized, there is no difference in the behavior until it reaches the extreme-event limit states. Conclusion: The girder to be tested has a working load within the elastic range and meets the usability requirements for allowable deflection. Therefore, even if a part of the casing is subjected to the tensile force at the level of cracking, the deck will first reach the compression failure due to the role of the reinforcing bar.

Structural Performance of Beam-Column Connections Using 51 mm Diameter with Different Anchorage Details (51 mm 대구경 철근을 사용한 외부 보-기둥 접합부의 정착상세별 구조성능 평가)

  • Kim, Jung-Yeob;Jung, Hyung-Suk;Chun, Sung-Chul;Kim, In-Ho;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2017
  • In exterior beam-column joints, hooked bars are used for anchorage, but usage of high-strength and large-diameter bars increases, headed bar is preferred for solving steel congestion and difficulty in construction. To investigate the structural performance of headed bars, Six exterior beam-column joints were tested under cyclic loading. Tests parameter were the anchorage methods and concrete strength. The test results indicate that behavior of headed bar specimens shows similar performance with hooked bar specimens. All specimens failed by flexural failure of the beam. Headed bar specimens shows better performance in anchorage and joint shear. All specimens were satisfied the criteria of ACI374.1-05. Test results indicate that use of headed bar in exterior beam column joint is available.

Code Change for using the High-Strength(550 MPa) Headed Deformed Bars of Large-Sized Diameter(57 mm) in Concrete Containments (대구경(57 mm) 및 고강도(550 MPa) 확대머리 철근의 콘크리트 격납구조물 적용을 위한 코드개정에 관한 연구)

  • Lee, Byung-Soo;Lim, Sang-Jun;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.147-161
    • /
    • 2017
  • Generally, significant amount of reinforcements are used in nuclear power plant structures and it may cause several potential problems during the construction. In particular, it is more difficult to pour concrete into structural member joint area than other areas because of the significant congestion of the joint area due to a lot of hooked bars, embedded materials, and other reinforcements. The purpose of this study is to solve these problems due to the reinforcement congestion by using the high-strength(ASTM A615 Gr.80) headed deformed bars of large-sized diameter(43 mm & 57 mm) in nuclear power plant structures as a alternative of standard hooked bars. In order to use headed deformed bars effectively, It is necessary to find the method how to relax limits on their use while maintaining or improving the anchorage capacity. Therefore, this study will analyze the results of tests planned to evaluate the influence of the restricted variables, such as bar size, yield strength, clear cover thickness.

Characteristics of Dynamic Shear Behavior of Pile-Soil Interface Considering pH Conditions of Groundwater (지하수 pH조건을 고려한 말뚝-지반 접촉면의 동적 전단거동 특성)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.5-17
    • /
    • 2022
  • A pile is a type of medium for constructing superstructures in weak geotechnical conditions. A pretensioned spun high-strength concrete (PHC) pile is composed of high-strength concrete with a specified strength greater than 80 MPa. Therefore, it has advantages in resistance to axial and bending moments and quality control and management since it is manufactured in a factory. However, the skin friction of a pile, which accounts for a large portion of the pile bearing capacity, is only approximated using empirical equations or standard penetration test (SPT) N-values. Particularly, there are some poor research results on the pile-soil interface under the seismic loads in Korea. Additionally, some studies do not consider geoenvironmental elements, such as groundwater pH values. This study performs sets of cyclic simple shear tests using submerged concrete specimens for 1 month to consider pH values of groundwater and clay specimens composed of kaolinite to generate a pile-soil interface. 0.2 and 0.4 MPa of normal stress conditions are considered in the case of pH values. The disturbed state concept is employed to express the dynamic behavior of the interface, and the disturbed function parameters are newly suggested. Consequently, the largest disturbance increase under basic conditions is observed, and an early approach to the failure under low normal stress conditions is presented. The disturbance function parameters are also suggested to express this disposition quantitatively.

A Study of Axial Eccentricity Strength of High Strength Concrete Thin Walls for Internet of Things (사물인터넷 구현을 위한 고강도 콘크리트 박막벽체의 극한 편심하중 강도에 관한 연구)

  • Oh, Soontaek;Lee, Dongjun;Kim, Yeonsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Recently, a high strength concrete(HSC) in excess of 80 MPa is popular to use in the domestic construction field. But there is no design standard of high strength concrete. It is reason why a study about structural behaviors of thin walls is required. In this paper, the accurate Finite Element Method as a virtual test is suggested considering material properties, which are concrete and steel, and the experimental fractural model suggested by Kupfer. It is conducted the comparison evaluation of the ultimate failure loads, lateral-displacements and crack propagation patterns between the results of experimental approach, which were carried on Saheb's test for normal strength concrete and Lee's test for high strength concrete. Therefore it is suggested to use the accurate virtual simulation test method and Ubiquitous Sensor Network(USN) by Finite Element Method for Internet of Things(IoT).

Ductility of High Strength Conceret Bridge Columns (고강도콘크리트 교각의 연성)

  • 이재훈;배성용;김광수;정철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.423-430
    • /
    • 2001
  • This research was conducted to investigate the seismic behavior and ductility of circular spiral reinforcement concrete bridge columns used in high strength concrete. The experimental variables consisted of transverse steel amount and spacing, different axial load levels. From the test results, sufficient displacement ductility(at least 5.5) was observed for the columus which was satisfied wi th the requirement confinement steel amount of the Korean Bridge Design Specification. In case of the columns with 50 MPa of concrete compressive strength, the columns wi th 80 % of the confinement steel amount requirement showed adequate displacement ductility(at least 6.5) under 0.2 of axial load level. And in case of the columns with 60.2 77a of concrete compressive strength, the columns with 44 \ulcorner of the confinement steel requirement provided adequate displacement ductilit under less than 0.1 of axial load level and the columns with 0.22 % provided showed comparatively high the ducti1iffy under 0.21 of axial load level.

  • PDF

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

Compressive and Flexural Behavior of High-Strength Concrete Incorporating Different Types of Hooked-End Steel Fibers (강섬유 특성에 따른 고강도 콘크리트의 압축 및 휨 거동)

  • Jeong, Woo-Jin;Jin, Ai-Hua;Yun, Hyun-Do
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • This paper investigates the effects of aspect ratio and volume fraction of hooked-end normal-strength steel fibers on the compressive and flexural properties of high-strength concrete with specified compressive strength of 60 MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were considered and three volume fractions of 0.25%, 0.50% and 0.75% for each steel fiber were respectively added into each high-strength concrete mixture. The test results indicated that the addition of normal-strength steel fibers is effective to improve compressive and flexural properties of high-strength concrete but fiber aspect ratio had little effect on the modulus of elasticity and compressive strength. As steel fiber content and aspect ratio increased, flexural beahvior of notched high-strength concrete beams was effectively improved.

A Study on the Development of a Dry PFB Method with High Fire Resistance (고강도콘크리트 내화성능을 확보한 건식화 PFB 공법 개발에 관한 연구)

  • Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire-resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire-resistant boards. 1. Improved PF board was prepared by adding inorganic fiber to existing board and using aggregate with grain size of 3mm or less. Molding was done at temperature higher than that for existing PF board molding. While wet curing is used for existing PF boards, this study used dry curing in order to enhance heat insulation performance. 2. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116℃ in 15mm, 103.8℃ in 20mm, and 94℃ in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3-hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF