• Title/Summary/Keyword: 802.11n

Search Result 180, Processing Time 0.022 seconds

Comparison of RF Property and Network Property for 802.11n WLAN between In-door and Out-door Environment (실내와 실외환경에서의 802.11n WLAN RF 특성 및 Network 특성 비교)

  • Kim, Gap-Young;An, Tea-Ki;Jeon, Bo-Ik;Yang, Se-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1702-1707
    • /
    • 2010
  • As quantities of the data that transmitting by the wireless are more increased, the interest and application are extending about 802.11n that uses by combination two existing 20MHz wireless LAN Channel. 802.11n use dual band of 2.4GHz band and 5.8GHz. So this is expected in mass wireless transmission method because of interference evasion effect in compliance with the radio communication of existing 2GHz neighborhood band. Like this 802.11n uses the radio as well and transmits information there is not only a possibility of undergoing an influence in radio wave environment of circumference. Specially the interior environment and outdoor environment is a possibility of saying that will be defined with each other different modeling as affects in radio communication is different. In this paper, we'll compare the influence to RF feature (802.11n) by (Indoor/Outdoor) environment difference through compared with 802.11n RF feature and Network feature in (Indoor/Outdoor) environment and also examine the correlation between RF feature and Network feature.

A Packet Detection Algorithm for IEEE802.11n System (IEEE802.11n 시스템에 적용 가능한 패킷 검출 알고리즘)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.330-335
    • /
    • 2008
  • This paper proposes a packet detection algorithm for IEEE802.11n system. IEEE802.11n is a multiple input multiple output (MIMO) system and we have to consider several combining techniques which are used in multiple receive antenna system. In this paper, we propose a hybrid packet detection algorithm which combines double sliding window algorithm or delay and correlation algorithm, that is used in single input single output (SISO) system, and multiple receive antenna combining algorithms, and simulated their performances in Iin system environments and shows the results.

MAC Throughput Analysis of MAC Aggregation and Block ACK in IEEE 802.11n (MAC 프레임 집합 전송과 블록 ACK 사용에 따른 IEEE 802.11n 수율 분석)

  • Moon, Kuk-Hyun;Chung, Min-Young;Cho, Kang-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.467-469
    • /
    • 2006
  • In wireless network environments, as users' demands on high-speed data communications due to increase of multi-media services, the necessity of new high-speed WLAN technologies has appeared. Nowaday, IEEE is standardizing a new WLAN protocol caned as IEEE 802.11n. To effectively use wireless resources, IEEE 802.11n introduces MAC aggregation function which is similar to that in IEEE 802.11e. In case of transmitting several frames without MAC aggregation, the frames include individual frame header and trailer, and their corresponding acknowledgement frames can appear on wireless link. However, if they are aggregated into single MAC frame, we can reduce the number of used bits due to frame headers/trailers and also remove redundant acknowledgement frames. In this paper, we explain two different MAC frame aggregation methods for IEEE 802.11e and IEEE 802.11n and evaluate their throughput by simulations.

  • PDF

Analysis of QoS in WLAN : Analysis of 802.11ac wireless LAN service in Korea (국내 무선 랜 서비스 현황 분석)

  • Kim, HyunHo;Bruce, Ndibanje;Jang, Won-Tae;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.104-107
    • /
    • 2014
  • Nowadays, smart devices such as smart phones, tablets PC, etc... are exchanging messages using WLAN(Wi-Fi) technologies for sending and receiving messages. With the growth of the smart devices users, the WLAN (Wi-Fi) medium communication could be loaded and then the Quality of Service is undesirable. Currently, there are five types of Wireless LAN such as802.11 a / b / g / n / ac supporting the communication between smart devices and the most used it WLAN 802.11n. Unfortunately, if the WLAN 802.11n is being used by a lot of users, there is poor Quality of Service due to the interference. In this paper, we analyze the Quality of Service provided by the 802.11n and compare with the next generation of wireless 802.11ac.

  • PDF

Design and Implementation of MAC Engine for Next-Generation WLAN (차세대 무선랜 구현을 위한 MAC 엔진 설계 및 구현)

  • Lee, Yeong-Gon;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.39-47
    • /
    • 2009
  • This paper presents implementation of two types of the 802.11 MAC engine for the next generation WLAN, 802.11n. The first version of MAC engine consists of hardwired logic and embedded firmware. Hardwired logic includes Tx block, Rx block, Backoff block, and ChannelManage block. Embedded firmware contains Protocol Control block, MLME block, and MSDU processing block. The first version has a time-critical fault during the atomic transmission caused by software overhead, so it can not be applied to 802.11n MAC. For that reason, the second version has additional blocks with hardwired logic modules to reduce software overhead of the first version. This enhanced version has 73Mbps throughput and it is expected to be further improved up to 129 Mbps with frame aggregation which is one of the key additional features of 802.11n. As a result, the second version of MAC engine can be applied to 802.11n MAC.

Analysis of IEEE 802.11n MAC and PHY Integration Method for High Throughput Performance based on NS-2 (고속 처리량을 위한 NS-2 기반 IEEE 802.11n MAC/PHY 연동 기법분석)

  • Kim, Joo-Seok;Lee, Yun-Ho;Song, Jae-Su;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.67-75
    • /
    • 2009
  • IEEE 802.11 WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Study trends of IEEE 802.11n for high throughput show two aspects, enhanced system throughput using aggregation among packets in MAC(Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PRY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PRY connection. This paper adapts A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer and MIMO in PRY layer for IEEE 802.11n system. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use NS-2(Network Simulator-2) considering MAC and PRY connection for reality.

A Carrier Frequency Offset Estimation Algorithm for IEEE802.11n system (IEEE802.11n 시스템에 적용가능한 반송파 주파수 옵셋 추정 알고리즘)

  • Jung, Hyeok-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.21-29
    • /
    • 2008
  • This paper proposes a carrier frequency of set estimation algorithm for IEEE802.11n system. As IEEE802.11n is a multiple input multiple output(MIMO) system, so there are several combining techniques which are used in multiple receive antenna system. In this paper, we propose hybrid carrier frequency offset estimation algorithms using combining techniques in multiple receive antenna systems, and show that the proposed selection combining carrier frequency offset (CFO) estimation algorithm can estimate carrier frequency offset within 1/10 MSE error at SNR 10 dB in channel B and within 1/2 MSE error at SNR 10 dB in channel D rather than the conventional MIMO CFO one.

Performance Analysis of IEEE 802.11n System adapting Frame Aggregation Methods (Frame Aggregation 기법을 적용한 IEEE 802.11n 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.515-527
    • /
    • 2009
  • IEEE 802.11n is an ongoing next-generation WLAN(Wireless Local Area Network) standard that supports a very high-speed connection with more than 100Mb/s data throughput measured at the MAC(Medium Access Control) layer. Study trends of IEEE 802.11n show two aspects, enhanced data throughput using aggregation among packets in MAC layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, the former doesn't consider wireless channel and the latter doesn't consider aggregation among packets for reality. Therefore, this paper analyzes data throughput for IEEE 802.11n considering MAC and PHY connection. A-MPDU(Aggregation-MAC Protocol Data Unit) and A-MSDU(Aggregation-MAC Service Unit) is adapted considering multi-service in MAC layer, WLAN MIMO TGn channel using SVD(Singular Value Decomposition) is adapted considering MIMO and wireless channel in PHY layer. Consequently, Simulation results shows throughput between A-MPDU and A-MSDU. Also, We use Ns-2(Network simulator-2) for reality.

802.11ac 무선랜 기술

  • Lee, Jae-Seung;Jeong, Min-Ho;Lee, Seok-Gyu
    • Information and Communications Magazine
    • /
    • v.30 no.6
    • /
    • pp.13-19
    • /
    • 2013
  • 2009년 9월 IEEE에서 802.11n 규격이 최종 승인된 바 있으며, 이로 인해 현재 11n 기반의 무선랜 보급이 더욱 본격화 되고 있다. 하지만 초고화질의 영상을 압축하지 않고 전송하려면 Gbps 이상의 전송 속도가 필요하며, 이를 위해 IEEE에서는 802.11n의 뒤를 이은 무선랜 규격인 802.11ac에 대한 표준을 개발하고 있다. IEEE 802.11ac는 다중 사용자 동시 접속 및 Gbps 급 이상의 고성능 지원에 초점을 맞추고 있으며, 802.11ac는 블루레이 및 압축되지 않은 초고화질 비디오 서비스를 실시간으로 제공할 수 있게 된다. 802.11ac규격은 현재 Draft 5.0까지 나와있는 상태로 표준 개발이 거의 완료되어 가고 있으며, 본 고에서는 이러한 IEEE 802.11ac 무선랜의 주요 기술 요소들에 대해 기술하고자 한다.

A Trend to Next-Generation Wireless LAN and Standardization Activity in IEEE 802.11 (차세대무선랜 기술 및 표준화 동향)

  • Lee, Je-Heon;Lee, Seok-Gyu
    • Electronics and Telecommunications Trends
    • /
    • v.23 no.3
    • /
    • pp.19-28
    • /
    • 2008
  • 2007년 3월부터 WFA에서 시작된 "Wi-Fi CERTIFIED(TM)802.11n Draft 2.0" 인증을 통해 현재까지 180가지가 넘는 제품이 출시되고 있는 가운데 이러한 시장의 상황을 반영하듯 여러 매체를 통해 IEEE 802.11n이 2008년 핫이슈로 등장하고 있다. 하지만 차세대무선통신의 기술적인 로드맵을 선도하고 있는 ITU-R WP8F의 IMT-Advanced에서 요구하고 있는 보행시 1Gbps까지 가능하게 하는 기술을 2010년까지 제공한다는 측면에서는 IEEE 802.11n의 성능이 못 미치는 게 사실이며, 이러한 상황을 반영해 IEEE 802.11 내부에서 IEEE 802.11n 후속으로 보행시 Gbps급의 전송 속도를 지원하는 새로운 기술에 대한 표준화 작업에 대한 논의가 꾸준히 있어 왔고, 그 결과 2007년 5월 정식으로 이를 위한 Study Group이 만들어져 작업에 들어갔다. 본 고에서는 이러한 IEEE 802.11에서의 표준화 활동을 중심으로 차세대무선랜에 대한 응용분야, 관련 기술, 표준화 작업 내용에 대해 살펴보고자 한다.