• Title/Summary/Keyword: 7S and 11S globulin

Search Result 30, Processing Time 0.024 seconds

Genetic variation of 7S and 11S globulins in soybean seed (콩 종실 단백질의 유전변이)

    • Korean Journal of Plant Resources
    • /
    • v.12 no.3
    • /
    • pp.198-203
    • /
    • 1999
  • 7S and 11S globulins are two major storage proteins in soybean seed. For improving the quality of soybean seed protein, an increase of 11S/7S ratio would be a desirable objective because 11S globulin contains much more sulfur-containing amino acids than 7S globulin. In this study, six soybean varieties grown at three locations were used for genetic variation analysis of 7S and 11S globulins. It was possible to screen the soybean genotypes having aberrant subunit compositions of the two globulins by a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). So, heritabilities, genotypic and phenotypic correlations among eight globulin fraction contents of soybean seeds were estimated. The mean value of 7S and 11S globulin fraction contents were 38.9% and 61.1%, respectively, and the ratio of 7S to 11S globulin ranged from 0.58 to 0.74. The high heritability value was found in $\beta$ subunits but the values of acidic and basic subunits were relatively low. Genotypic correlations were higher than the corresponding phenotypic correlations in most of globulin subunit contents. $\beta$ subunits was negatively correlated with $\alpha$ and $\alpha$' subunits among 7S fractions, while no significant correlation between $\alpha$ and $\alpha$' subunits could be found In case of 11S fractions, acidic and basic subunits exhibited no genotypic but negative phenotypic correlation.

  • PDF

11S and 7S Globulin Fractions in Soybean Seed and Soycurd Characteristics (콩 종실 단백질 분획(7S, 11S)과 두부특성)

  • Kim, Yong-Ho;Kim, Seok-Dong;Hong, Eun-Hi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.348-352
    • /
    • 1994
  • Soybean seed consists of two major storage protein, the 7S and 11S globulins. For improving the quality of soybean seed protein, an increase of 11S/7S ratio would be a desirable objective because the 11S globulin contains much more the sulfur-containing amino acids than the 7S globulin. In this study, some soybean varieties were used to investigate the analyzing method for 7S and 11S globulins. 7S and 11S globulins couble be fractionated by their different solubilities in tris buffers. Adjusting the pH and tris concentration were major factors affecting the precipitation of the two globulins. And it was possible to screen the soybean genotypes having aberrant subunit compositions of the two globulins by an sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of total soybean proteins. The ratio of 11S to 7S globulin ranged from 1.29 to 1.38. This paper also dealed with the contribution of protein components in soybean seeds to the physical properties of soycurd. It indicated that the soycurd from crude 11S was remarkably harder than that from crude 7S, and springiness and cohesiveness were slightly higher in soycurd having higher proportion of 11S. So, it may concluded that proportion of protein components in soybean seed can be important factor which controls the suitability for soycurd or other foods.

  • PDF

The Soy Protein Coagulation Phenomenon by Heat-and Enzyme-Treatment

  • Park, Yang-Won;Kim, Young-Jeon
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.77-82
    • /
    • 1997
  • The comparison soy protein coagulation by heat-and enzyme-treatment are summarized. The gelation mechanism of glycinin by heating was mainly due to dissociation and aggregation of the basic subunit of 11S globulin. In case of 7S globulin, macro-soluble aggregates may be formed by noncovalent intraction more than 30min at 8$0^{\circ}C$. Whereas, coagulum occured by the microbial enzyme was more minuter than the other Ca-, HCI-coagulum. Heat treatment attacked the basic subunit of 11S globulin and this results agreed very, how-ever, preferred acidic subunit to basic subunit of 11S globulin and attacked the 7S globulin, that could produce coagulum products within 4~5min at $65^{\circ}C$.

  • PDF

Variations in Seed Storage Protein among Different Colored Soybean Varieties

  • Kim, Sun-Lim;Yun, Hong-Tae;Moon, Jung-Kyung;Park, Keum-Yong;Lee, Yeong-Ho;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.141-147
    • /
    • 2004
  • This study was carried out to know the variation of soybean seed proteins, 11S and 7S globulins, and their amino acid compositions among different colored soybean varieties, 'Danbaegkong' (yellow), 'Pureunkong' (green) 'Jinyulkong' (brown), and 'Geoumjeongkong l' (black). Soybean seed proteins showed a wide range in molecular size, but the electrophoresis patterns of total seed protein subunits showed a similarity among different colored soybean varieties. Amino acid compositions of total seed proteins were similar for all soybean varieties tested. However, soybean varieties showed low composition rates in sulfur containing amino acids. The composition rates of cysteine and methionine in the 11S globulins were higher than those of total seed proteins and 7S globulins. Glutamic acid and glycine were higher in the 11S and 7S globulins than those of total seed proteins. However, the levels of methionine and phenylalanine are high in the 11S globulins, but those of valine and lysin are slightly lower than the 7S globulins. By using HPLC, we tried to analyse the soybean seed proteins. The 11S globulin was composed of 10 major peaks whereas the 7S globulin was composed of 4 major peaks. The composition rates of 11S related proteins have a tendency to increasing during the maturing whereas those of 7S related proteins have a tendency to decreasing. Composition rates of each peaks among different colored soybean varieties suggested that soybean seed proteins are varied, although they showed similarity in the electrophoresis patterns, and understanding of this characteristics is important for the utilization of soybeans.

Interaction between Whey and Soybean Proteins (유청 및 대두 단백질의 상호작용)

  • Shon, Dong-Hwa;Lee, Hyong-Joo
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.361-370
    • /
    • 1988
  • To investigate the interaction between whey and soybean protein, thermal changes of component proteins were analyzed by column chromatography and gel electrophoresis. In the Sephadex G-200 chromatography of the mixture treated at above $80^{\circ}C$, the amount of low molecular weight proteins and high molecular aggregates were increased. This implicated that dissociation of 1ls globulin into subunits and the formation of soluble aggregates between these subunits and whey proteins that contain thiol and disulfide groups. These interaction between soy proteins and ${\beta}-lactoglobulin$, ${\alpha}-lactalbumin$, and proteose-peptone 3 were confirmed by gel electrophoresis. Bovine serum albumin, Immunoglobulin-G(H), Lactoferrin, 1ls-subunits(basic and acidic), and subunit of 7s globulin were also considered to interact each other depending on the condition of the salt solutions.

  • PDF

Studies on Changes of ${\gamma}$-Globulin and Cholesterol of Rat Blood Fed on Yoghurt and Koumiss (Yoghurt와 Koumiss를 급여한 Rat 혈액중(血液中)의 ${\gamma}$-globulin과 Cholesterol의 변화에 관한 연구)

  • Jo, Gi Hwan;Kim, Dong Shin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.151-157
    • /
    • 1985
  • This study was carried (Jut to find out changes of ${\gamma}$-globulin and cholesterol of rat blood fed on yoghurt and Koumiss. Yoghrt and koumiss were manufactured with fortifed milk and Lactobacillus bulgaricus, streptococcus thermophilus and Saccharomyces fragilis were used. The twenty rats were devised into 4 groups with 5 replications by completely randomized design. The experimental groups are the control, milk, yoghrt and koumiss feeding groups. The results are summerized as follows ; The changes of pH after 8hrs incubation with Lactobacillus bulgricus, Streptococcus thermophilus and the mixed strains were 3.7, 4.6 and 3.5 at $42^{\circ}C$, respectively. Average alcohol percentage of Koumiss was 1.2 (%). The average viscosity of yoghurt and Koumiss with milk showed 1500 cp and 390 cp. respectively at 11 % of milk total solid. ${\gamma}$-globulin contents in blood of rat fed on yoghurt and Koumiss were higher than those of control and milk. Cholesterol of rat blood in yoghurt and Koumiss group were lower than those of control and milk group.

  • PDF

Germination and Proteome Profile Characteristics of Wheat Seeds Treated under Different Concentrations of Abscisic Acid (Abscisic acid 농도에 따른 밀 종자의 발아와 단백질체의 발현 특성)

  • Jeong, Jae-Hyeok;Kim, Dae-Wook;Hwang, Woon-Ha;An, Sung-Hyun;Jeong, Han-Yong;Lee, Hyeon-Seok;Choi, In-Bea;Choi, Kyung-Jin;Yun, Jong-Tak;Yun, Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • This study was conducted to investigate the germination and proteome profile characteristics of wheat seeds treated under various concentrations of abscisic acid (ABA). After-ripening, the seeds of three wheat cultivars (Baegjoong, Keumkang, and Uri) showing different levels of dormancy were used. Germination index and germination rate of the cultivars was higher than 0.95% and 98%, respectively, and these were not significantly different under 0, 10, 30, and $50{\mu}M$ ABA at 7 d after germination. However, the growth of the shoot and radicle was significantly inhibited at 10, 30, and $50{\mu}M$ ABA compared to that at $0{\mu}M$ ABA. Mean ABA content of the embryos of seeds germinated at 0 and $50{\mu}M$ ABA for 7 d was 0.8 and $269.0ngmg^{-1}DW$, respectively. Proteins extracted from embryos germinated for 4 d were analyzed by two-dimensional gel electrophoresis, and proteins showing a difference of 1.5-fold or greater in their spot volume relative to that of $0{\mu}M$ ABA were identified. The expression of four protein spots increased at $50{\mu}M$ ABA and two protein spots were detected only at $50{\mu}M$ ABA; these six proteins were all identified as globulin types. Conversely, the expression of three protein spots decreased at $50{\mu}M$ ABA and were identified as cytosolic glutamine sysnthetase, isocitrate dehydrogenase, and S-adenosylmethionine synthetase 2. In conclusion, ABA did not inhibit the germination rate regardless of pre-harvest sprouting characteristics of the cultivars. However, the growth of the shoot and radicle was significantly inhibited by ABA, most likely through the down regulation of glutamine, methyl group donor, and polyamines biosynthesis, among others, while accompanied by globulin accumulation in the embryos.

Inheritance of 7S α' - subunit Protein in Soybean Seed (콩의 7S α' - subunit 단백질의 유전)

  • Sung, Mi-Kyung;Kim, Kyung-Roc;Park, Jung-Soo;Hwang, Kyo-Jin;Chung, Jong-Il
    • Journal of agriculture & life science
    • /
    • v.43 no.5
    • /
    • pp.39-42
    • /
    • 2009
  • Soybean is an important sources of plant proteins for human and animal nutrition. The use of soybean proteins has been expanded in the food industry due to their excellent nutritional benefits. But, Soybeans contain allergenic proteins that cause allergies to sensitive individuals. ${\beta}$-conglycinin(7S globulin) and glycinin(11S globulin) are the major components of storage protein in soybean. ${\beta}$-conglycinin consists of three subunits, ${\alpha}^{\prime}$, ${\alpha}$, ${\beta}$ and exhibits poorer nutritional and food processing properties than glycinin. There is a great deal of interest in the development of soybean lines with reduced amounts of ${\beta}$-conglycinin. The objective of this study was to determine the inheritance of ${\alpha}^{\prime}$-subunit protein in 7S globulin. F2 population was developed from the cross of "Jinpumkong2ho"(${\alpha}^{\prime}$-subunit presence) and PI506876(${\alpha}^{\prime}$-subunit absence) parent. Total 98 of F2 seeds were obtained and analyzed for the segregation of ${\alpha}^{\prime}$-subunit protein by SDS-PAGE. Among 98 F2 seeds, 70 F2 seeds showed ${\alpha}^{\prime}$-subunit protein and 28 F2 seeds did not show ${\alpha}^{\prime}$-subunit protein. The segregation ratios of 3 : 1 for presence and absence of ${\alpha}^{\prime}$-subunit protein were observed(${\chi}^2=0.667$, P=0.414). These data indicate that presence and absence of ${\alpha}^{\prime}$-subunit protein is controlled by a single major gene and might be useful for strain selection of 7S protein reduced soybean.

Changes of Nitrogen Compounds and Nutritional Evaluation of Soybean Sprout -Part VI. Changes in electrophoretic pattern of protein- (콩나물 제조중(製造中) 질소화합물(窒素化合物)의 변화(變化)와 그 영양학적(營養學的) 연구(硏究) -제육보(第六報). 단백질(蛋白質)의 전기영동양상변화(電氣泳動樣相變化)-)

  • Yang, Cha-Bum;Park, Sang-Ki;Yoon, Suk-Kwon;Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.129-134
    • /
    • 1984
  • Change of protein component in soybean sprout grown at four temperatures was investigated by polyacrylamide gel electrophoresis. Main bands were identified using purified seed globulins. Electrophoretogram showed 5 main bands (a. b, c, d, and p) and 10 minor bands in seed and maximum number (19) of bands (8 main band including 0 and 11 minor) at 4th day after germination in cotyledon. All bands appeared in axis protein but resolution was poor. In cotyledon, a component (most rapidly) and b+c+d component decreased while o+p component and other minor components were increased at 6th day and decreased thereafter. In axis all components increased rapidly, especially in minor components and b+c+d component. High growing temperature accelerated decrease in cotyledon and increase in axis of protein, especially for 11S. The a component was identified as 7S, b+c+d as 11S and o+p as 2S globulin.

  • PDF

Hydrolytic Patterns of 11S Globulin (Glycinin) by Soymilk-Clotting Enzymes I and II (두유응고효소 I 및 II에 의한 11S 단백질(Glycinin)의 가수분해 패턴)

  • Park, Yang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.273-279
    • /
    • 1993
  • Hydrolytic patterns of 11S globulin (glycinin), storage protein of soybean, by soymilk-clotting enzymes Iand IIfrom Bacillus sp. K-295G-7, which was the first soymilk-clotting enzyme to be found in a bacteria, was investigated. The clotting time of about 4~5 min is revealed by the Enzymes Iand II(0.025 units at 35$^{\circ}C$) on the acidic subunit. In electrophoresis, acidic subunit (A$_3$, M.W. 45,000) disappeared almost completely within 2 min and new products corresponding to the molecular weight of 16,000 and 20,000 were formed by the action of Enzymes I and II. Furthermore, Enzyme II produced a degradation compound having a molecular weight of about 30,000. In contrast, the hydrolytic patterns of basic subunit (M.W. 20,000) by Enzymes I and II were similar, but Enzyme II produced low molecular weight products slower than that of Enzyme I.

  • PDF