• Title/Summary/Keyword: 6 MV

Search Result 870, Processing Time 0.022 seconds

The Impact of Tissue Inhomogeneity Corrections in the Treatment of Prostate Cancer with Intensity-Modulated Radiation Therapy (전립선암의 세기조절 방사선 치료시 밀도보정의 효과)

  • Han Youngyih;Park Won;Huh Seung Jae
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • Purpose: To investigate the effects of tissue inhomogeneity corrections on the dose delivered to prostate cancer patients treated with Intensity-Modulated Radiation Therapy (IMRT). Methods and Materials: For five prostate cancer patients, IMRT treatment plans were generated using 6 MV or 10 MV X-rays. In each plan, seven equally spaced ports of photon beams were directed to the isocenter, neglecting the tissue heterogeneity in the body. The dose at the isocenter, mean dose, maximum dose, minimum dose and volume that received more than 95% of the isocenter dose in the planning target volume ( $V_{p>95%}$) were measured. The maximum doses to the rectum and the bladder, and the volumes that received more than 50, 75 and 90% of the prescribed dose were measured. Treatment plans were then recomputed using tissue inhomogeneity correction maintaining the intensity profiles and monitor units of each port. The prescription point dose and other dosimetric parameters were remeasured. Results: The inhomogeneity correction reduced the prescription point dose by an average 4.9 and 4.0% with 6 and 10 MV X-rays, respectively. The average reductions of the $V_{p>95%}$ were 0.8 and 0.9% with the 6 and 10 MV X-rays, respectively. The mean doses in the PTV were reduced by an average of 4.2 and 3.4% with the 6 and 10 MV X-rays, respectively. The irradiated volume parameters in the rectum and bladder were less decreased; less than 2.1 % (1.2%) of the reduction in the rectum (bladder). The average reductions in the mean dose were 1.0 and 0.5% in the rectum and bladder, respectively. Conclusions: Neglect of tissue inhomogeneity in the IMRT treatment of prostate cancer gives rise to a notable overestimation of the dose delivered to the target, whereas the impact of tissue inhomogeneity correction to the surrounding critical organs is less significant.

  • PDF

Identification and Characterization of Tobamoviruses Isolated from Commercial Pepper Seeds (시판 고추 종자에서 분리한 Tobamovirus의 동정 및 특성 조사)

  • 한정헌;손성한;나용준
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.164-169
    • /
    • 2001
  • Two Tobamoviruses showing different local lesion types on Nicotiana glutinosa was isolated from commercial pepper seeds. These viruses were designated Tobamovirus-6 (T-6) and Tobamovirus-19 (T-19). The biological and serological assays revealed that T-6 and T-19 were closely related to Pepper mild mottle virus (PMMoV) and Tomato mosaic virus (ToMV), respectively, The isolates also had low similarity in the array of viral coat protein gene sequences, of which T-19 was most identical to known strains of ToMV, while T-6 was closely related to PMMoV.

  • PDF

Assessment of the usefulness of the Machine Performance Check system that is an evaluation tools for the determination of daily beam output (일간 빔 출력 확인을 위한 평가도구인 Machine Performance Check의 유용성 평가)

  • Lee, Sang Hyeon;Ahn, Woo Sang;Lee, Woo Seok;Choi, Jin Hyeok;Kim, Seon Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.65-73
    • /
    • 2017
  • Purpose: Machine Performance Check (MPC) is a self-checking software based on the Electronic Portal Imaging Device (EPID) to measure daily beam outputs without external installation. The purpose of this study is to verify the usefulness of MPC by comparing and correlating daily beam output of QA Beamchecker PLUS. Materials and Methods: Linear accelerator (Truebeam 2.5) was used to measure 10 energies which are composed of photon beams(6, 10, 15 MV and 6, 10 MV-FFF) and electron beams(6, 9, 12, 16 and 20 MeV). A total of 80 cycles of data was obtained by measuring beam output measurement before treatment over five months period. The Pearson correlation coefficient was used to evaluate the consistency of the beam output between the MPC and the QA Beamchecker PLUS. In this study, if the Pearson correlation coefficient is; (1) 0.8 or higher, the correlation is very strong (2) between 0.6 and 0.79, the correlation is strong (3) between 0.4 and 0.59, the correlation is moderate (4) between 0.2 and 0.39, the correlation is weak (5) lower than 0.2, the correlation is very weak. Results: Output variations observed between MPC and QA Beamchecker PLUS were within 2 % for photons and electrons. The beam outputs variations of MPC were $0.29{\pm}0.26%$ and $0.30{\pm}0.26%$ for photon and electron beams, respectively. QA Beamchecker PLUS beam outputs were $0.31{\pm}0.24%$ and $0.33{\pm}0.24%$ for photon and electron beams, respectively. The Pearson correlation coefficient between MPC and QA Beamchecker PLUS indicated that photon beams were very strong at 15 MV, and strong at 6 MV, 10 MV, 6 MV-FFF and 10 MV-FFF. For electron beams, the Pearson correlation coefficient were strong at 16 MeV and 20 MeV, moderate at 9 MeV and 12 MeV, and very weak at 6 MeV. Conclusion: MPC showed significantly strong correlation with QA Beamchecker PLUS when testing with photon beams and high-energy electron beams in the evaluation of daily beam output, but the correlation when testing with low-energy electron beams (6 MeV) appeared to be low. However, MPC and QA Beamchecker PLUS are considered to be suitable for checking daily beam output, as they performed within 2 % of beam output consistency during the observation. MPC which can perform faster than the conventional daily beam output measurement tool, is considered to be an effective method for users.

  • PDF

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

A Study on the Photoneutron Dose Estimation in Flattening Filter Mode and Flattening Filter Free Mode for Medical Linear Accelerator (의료용 선형가속기의 Flattening Filter Mode와 Flattening Filter Free Mode 간에 광중성자 선량 평가)

  • Yang, Oh Nam;Lim, Cheong Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.297-302
    • /
    • 2017
  • In this study, the generation of photoneutrons between the 10 MV FF mode and the FFF mode was evaluated and the amount of photoneutrons generated by the 10 MV and 15 MV energy changes in the FFF mode was evaluated. The generated neutrons were evaluated at 13 measurement points and the KTEPC was used to collect the generated neutrons. 10 MV FF mode was measured at 10 MV FF mode and FFF mode at all measurement points. In the superior direction, 0.455mSv and 0.152mSv were the largest, and more than 33% optical neutron was generated in FF. 10 MV in FFF mode, 15 MV in 15 MV, and 0.402 mSv in the direction of Superior, and 6.9% in the direction.

Determination of the Equivalent Energy of a 6 MV X-ray Beam (6 MV X-선 빔의 등가에너지 결정)

  • Kim, Jong-Eon;Park, Byung-Do
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.591-596
    • /
    • 2016
  • The purpose of this study is to determine the equivalent energy of a 6MV X-ray beam in the experiment. The half-value layer (HVL) of lead for the 6 MV X-ray beam was measured using an ionization chamber. The linear attenuation coefficients were calculated with HVL. And, the mass attenuation coefficient was obtained by dividing the linear attenuation coefficient by the density of lead. The equivalent energy of mass attenuation coefficient was determined using the photon energy versus mass attenuation coefficient data of lead given by National Institute of Standards and Technology (NIST). In conclusion, the equivalent energy of the 6 MV X-ray beam was determined to be 1.61 MeV. This equivalent energy was determined to be about 30% lower than reported by Reft. The reason is presumed to be due to the presence of an air cavity between the lead attenuators.

Wedge Factors in Various Field Sizes (조사야의 크기에 따른 쐐기 인자)

  • 조철우
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 1995
  • The wedge factor is defined as a ratio of the absorbed dose in a phantom at a depth of reference point on the central axis with the wedge in the place to the absorbed dose at the same point with the wedge removed. We attempted to show the wedge factors dependence on the field sizes. The wedge factors were measured at various field sizes on 6MV and 15MV x-ray of Varian Clinac 1800 and 5MV x-ray of Philips SL75/5. The single wedge factor measured for a reference field size(10cmx10cm) may not be valid for all field sizes. For the thick wedge, especially an autowedge on Philips SL75/5 for maximum field size width 30cm. the error can be significant(6.6%). Therefore, in the presence of a wedge filter in the beam, a field size dependent wedge factor may be necessary in the treatment dose calculations.

  • PDF

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF

Chamber-to-chamber Variations in the Same Type of a Cylindrical Chamber for the Measurements of Absorbed Doses (흡수선량 측정 시 동종 원통형 이온함에서 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor ${\kappa}_{Q,Q_0}$ of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same ${\kappa}_{Q,Q_0}$ to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면 내 공동의 존재에 따른 선량분포의 변화측정)

  • Cho, Jung-Hee
    • Journal of radiological science and technology
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed. This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy Photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and 20.6% for the CO-60, 4 MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions it is, the larger beam reductions we have. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF