• Title/Summary/Keyword: 5.9GHz

Search Result 788, Processing Time 0.026 seconds

Analysis of Tapered Slot Antenna for UWB with Directivity Characteristic (지향성 특성을 갖는 UWB 용 테이퍼드 슬롯 안테나 분석)

  • Kim, Sun-Woong;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.691-697
    • /
    • 2016
  • In this paper, we propose the antenna to appropriate for a UWB communication system, and it meets characteristics for location recognition in predetermined range. Proposed tapered slot antenna was designed through the HFSS simulation tool of Ansys. Inc., it was produced by Taconic TRF-45 based on dielectric constant of 4.5, loss tangent 0.0035, thickness 1.62mm. The tapered slot antenna is analyzed the standing wave ratio and reflection coefficient, radiation pattern in the frequency domain. The impedance bandwidth range of the produced tapered slot antenna is from 3.8 ~ 8.9GHz to 5.1GHz, E-plane and H-plane radiation pattern meet directional antenna characteristics for indoor and outdoor location recognition in predetermined range. The antenna gain is 7.4 dBi(6GHz)in the simulation, the result of measurement demonstrated 7.4 dBi(6 GHz) of antenna maximum gain. Proposed tapered slot antenna meets UWB communication system but simulated and measured results were slightly different.

A 1 GHz Tuning range VCO with a Sigma-Delta Modulator for UWB Frequency Synthesizer (UWB 주파수 합성기용 1 GHz 광 대역 시그마 델타 성긴 튜닝형 전압 제어 발진기)

  • Nam, Chul;Park, An-Su;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.64-72
    • /
    • 2010
  • This paper presents a wide range VCO with fine coarse tuning step using a sigma-delta modulation technique for UWB frequency synthesizer. The proposed coarse tuning scheme provides the low effective frequency resolution without any degradation of phase noise performance. With three steps coarse tuning, the VCO has wide tuning range and fine tuning step simultaneously. The frequency synthesizer with VCO was implemented with 0.13 ${\mu}m$ CMOS technology. The tuning range of the VCO is 5.8 GHz~6.8 GHz with the effective frequency resolution of 3.9 kHz. It achieves the measured phase noise of -108 dBc/Hz at 1 MHz offset and a tuning range 16.8 % with 5.9 mW power. The figure-of-merit with the tuning range is -181.5 dBc/Hz.

Implementation of Voltage Controlled Oscillator Using Planar Structure Split Ring Resonator (SRR) (평면형 구조의 분리형 링 공진기를 이용한 전압제어 발진기 구현)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1538-1543
    • /
    • 2013
  • In this paper, a novel split ring resonator is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator. Oscillator using proposed split ring resonator is designed, it has improved phase noise characteristics. At the fundamental frequency of 5.8GHz, 7.22dBm output power and -83.5 dBc@100kHz phase noise have been measured for oscillator with split ring resonator. The phase noise characteristics of oscillator is improved about 9.7dB compared to one using the general ${\lambda}/4$ microstrip resonator. Next, we designed voltage controlled oscillator using proposed split ring resonator with varactor diode. The VCO has 125MHz tuning range from 5.833GHz to 5.845GHz, and phase noise characteristic is -118~-115.5 dBc/Hz@100KHz. Due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Tunable Band-pass Filters using Ba0.5Sr0.5TiO3 Thin Films for Wireless LAN Application (무선랜 대역용 Ba0.5Sr0.5TiO3 박막을 이용한 가변 대역 통과 여파기)

  • Kim, Ki-Byoung;Yun, Tae-Soon;Lee, Jong-Chul;Kim, Il-Doo;Lim, Mi-Hwa;Kim, Ho-Gi;Kim, Jong-Heon;Lee, Byungje;Kim, Na-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.819-826
    • /
    • 2002
  • In this paper, the performance of Au / $Ba_{0.5}Sr_{0.5}TiO_3$ (BST) / Magnesium oxide (MgO) two-layered electrically tunable band-pass Filters (BPFs) is demonstrated. The devices consist of microstrip, coplanar waveguide (CPW), and conductor-backed coplanar waveguide (CBCPW) structures. These BST thin film band-pass filters have been designed by the 2.5 D field simulator, IE3D, Zeland Inc., and fabricated by thin film process. The simulation results, using the 2-pole microstrip, CPW, and CBCPW band-pass filters, show the center frequencies of 5.89 GHz, 5.88 GHz, and 5.69 GHz, and the corresponding insertion losses are 2.67 dB, 1.14 dB, and 1.60 dB, with 3 %, 9 %, and 7 % bandwidth, respectively. The measurement results show the center frequencies of 6.4 GHz, 6.14 GHz, and 6.04 GHz, and their corresponding insertion losses are 6 dB, 4.41 dB, and 5.41 dB, respectively, without any bias voltage. With the bias voltage of 40 V, the center frequencies for the band-pass filters are measured to be 6.61 GHz, 6.31 GHz, and 6.21 GHz, and their insertion losses are observed to be 7.33 dB, 5.83 dB, and 6.83 dB, respectively. From the experiment, the tuning range for the band-pass filters are determined as about 3 % ~ 8 %.

ESPAR(Electronically Steerable Parasitic Array Radiator) Antenna Composed of Uniplanar Yagi Dipole and Two Parasitic Dipoles (단일면 야기 다이폴과 두 기생 다이폴로 구성된 전자 빔 조향 기생 배열 안테나)

  • Ju, Sang-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1410-1415
    • /
    • 2008
  • This paper proposes an small electronically steerable parasitic array radiator composed of a uniplanar dipole as a feeding element and two dipoles as parasitic elements. The fabricated antenna shows by measurement the $3.3{\sim}4.3\;dB$ gain between $-100{\sim}1000$ azimuth range in the dipole vertical plane and -10 dB return loss within $5.4{\sim}5.9\;GHz$, which includes $5.725{\sim}5.825\;GHz$ UNII band.

CPW Fed Ultra Wide Band Slot Antenna (초광대역 CPW 급전 슬롯안테나)

  • 김기수;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.663-668
    • /
    • 2003
  • In this paper, a CPW fed slot antenna with novel broadband feed structure is presented. To enhance the impedance bandwidth of the slot antenna we proposed the broadband feed structure of new bow-tie slot which is combined with four λ/2 rectangular radiation slot and inductively coupled. The measured 10 dB impedance bandwidth is about 60 %(5.2∼9.4 GHz) and the simulated antenna gain is about 6 dBi at 7.36 GHz.

Analysis Microstrip Patch Antenna of MIMO Structure (MIMO 구조의 마이크로스트립 패치 안테나 분석)

  • Kim, Sun-Woong;Park, Jung-Jin;Choi, Dong-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.944-949
    • /
    • 2015
  • This study proposed a patch antenna with a MIMO structure which is applicable for wireless communication equipment by combining a single patch antenna with a multi port. The proposed MIMO patch antenna was designed through the TRF-45 substrate with a relative permittivity of 4.5, loss tangent equal to 0.0035 and dielectric high of 1.6 mm, and the center frequency of the antenna was 2.45 GHz in the ISM (Industrial Scientific and Medical) band. The proposed MIMO patch antenna had a 500 MHz bandwidth from 2.16 ~ 2.66 GHz and 24.1% fractional bandwidth. The return loss and VSWR were -62.05 dB, 1.01 at the ISM bandwidth of 2.45 GHz. The Wibro band of 2.3 GHz was -17.43 dB, 1.33, the WiFi band of 2.4 GHz was -31.89 dB, 1.05, and the WiMax band of 2.5 GHz was -36.47 dB, 1.03. The radiation patterns included in the bandwidth were directional, and the WiBro band of 2.3 GHzhad a gain of 4.22 dBi, the WiFi band of 2.4 GHz had a gain of 4.12 dBi, the ISM band of 2.45 GHz had a gain of 4.06dBi, and the WiMax band of 2.5 GHz had a gain of 3.9 6dBi.

Design of a Meander Type Microstrip Antenna in the 5GHz Band (5GHz 대역 미앤더 형태 마이크로스트립 안테나 설계 및 제작)

  • Jeong, Gyey-Taek;Yoon, Joong-Han;Kang, Moon-Kyu;Lee, Hwa-Choon;Kwak, Kyung-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1083-1090
    • /
    • 2004
  • In this paper, a meander-type microstrip patch antenna for application in 5GHz-hand is designed and fabricated To obtain enough bandwidth in VSWR≶2, the foam is inserted between substrate and ground plane, the coaxial probe source 1S used Antenna is simulated varing the length and width of meander line, the position of probe feeding and the thick of airgap. Later antenna is fabricated with optimizated antenna parameter. The measured result of Fabricated antenna obtained IGHz(l7.5%) bandwidth in VSWR≶2, the gain of 7.3-9.5dBi, Unidirectional pattern.

A study on the coaxial-cable propagation characteristic to Frequency bands 12GHz ${\sim}$ 20GHz (12GHz${\sim}$20GHz 주파수대역에 관한 동축케이블 내 전파특성에 관한 연구)

  • Hong, Wan-Pyo;Kim, Hak-Sob;Lee, Jong-Bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.697-700
    • /
    • 2005
  • 일반적으로 고주파인 위성신호를 수신하려면 전송로상의 손실이 생기는데 이러한 손실을 거치지 않고 위성신호를 직접수신하여 고주파대역의 신호의 손실을 줄이기 일반적으로는 도파관을 사용하여야 하나 동관을 이용하여 12GHz${\sim}$20GHz 대역을 통과하는 전파의 특성을 측정하였고 11.71GHz${\sim}$12.01GHz 대에서는 측정이 되지 않는 차단 주파수 현상을 보였으며 13GHz 이상의 주파수에서는 원하는 신호가 측정되었다. 측정 장비로는 Aglient 사의 Network Analyzer에서 11GHz 이상의 신호를 만들어 각각 5C HFBT, 10C HFBT Cable과 동관으로 보낸후 Spectrum Analyzer로 들어오는 신호를 측정하였으며 이에 따른 전송 특성을 분석 하였다.

  • PDF

A 800MHz~5.8GHz Wideband CMOS Low-Noise Amplifier (800MHz~5.8GHz 광대역 CMOS 저잡음 증폭기 설계)

  • Kim, Hye-Won;Tak, Ji-Young;Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.45-51
    • /
    • 2011
  • This paper presents a wideband low-noise amplifier (LNA) covering 800MHz~5.8GHz for various wireless communication standards by utilizing in a 0.13um CMOS technology. Particularly, the LNA consists of two stages to improve the low-noise characteristics, that is, a cascode input stage and an output buffer with noise cancellation technique. Also, a feedback resistor is exploited to help achieve wideband impedance matching and wide bandwidth. Measure results demonstrate the bandwidth of 811MHz~5.8GHz, the maximum gain of 11.7dB within the bandwidth, the noise figure of 2.58~5.11dB. The chip occupies the area of $0.7{\times}0.9mm^2$, including pads. DC measurements reveal the power consumption of 12mW from a single 1.2V supply.