• Title/Summary/Keyword: 5.9GHz

Search Result 788, Processing Time 0.025 seconds

Design and fabrication on 2.7-2.9 GHz, 1.5 kW pulsed Solid state power amplifier (1.5 kW, 2.7-2.9 GHz, 반도체 펄스 전력 증폭기 설계 및 제작)

  • Jang, S.M.;Choi, G.W.;Joo, J.H.;Choi, J.J.;Park, D.M.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.91-96
    • /
    • 2005
  • In this paper, describes the design and performance of a 1.5 kW solid-state pulsed power amplifier, operating over 2.7-2.9 GHz at a duty of 10% and with a pulse width of 100 us for radar application. The solid-state pulsed power amplifier configures a series of 8-stage cascaded power amplifier with different RF output power levels. Low loss Wilkinson combiners are used to combine output powers of six 300W high power solid state modules. Tests show peak output power of 1.61 kW, corresponding to PAE of 26.2% over 2.7-2.9 GHz with pulse width of 100 us and a PRF of 1 kHz.

  • PDF

A Study on the Effective Usage of mmWave Bands for 5G Backhaul Links (5G 백홀 링크를 위한 밀리미터파 대역의 효율적 이용에 관한 연구)

  • Kang, Young-heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • Since scarcity of spectrum in future mobile networks, millimeter wave frequencies from 30 GHz to 300 GHz have been proposed to be used in an important part of 5G mobile communication backhaul links to provide several giga bits services. In ITU-R has been invited to conduct and complete in time for WRC-19 the appropriate studies to determine the spectrum needs for the terrestrial component of IMT in the frequency range between 24.25 GHz and 86 GHz. Also, small cells such as a femtocell, and heterogeneous networks have been deployed through world in order to enhance the communication capacity. At this stage, it is important to develop millimeter wave frequencies to provide 5G mobile broadband services, and thus this paper proposes the effective usage of these frequencies by summarizing the FCC allocation of millimeter waves, their propagation characteristics, the required minimum path length, and the interference effect.

Design of Broadband Hybrid Mixer using Dual-Gate FET (이중게이트 FET를 이용한 광대역 하이브리드 믹서 설계)

  • Jin, Zhe-Jun;Lee, Kang-Ho;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2005
  • This paper presents the design of a broadband hybrid mixer using dual-gate FET topology with a low-pass filter which improves return loss of output to isolate RF and LO signal. The low-pass filter shows the isolation with RF and LO signal of better than 40 dBc from 1.5 GHz to 5.5 GHz. The dual-gate mixer which has been designed by using cascade topology operates when the lower FET is biased in linear region and the upper FET is in saturation region. The input matching circuit has been designed to have conversion gain from 1.5 GHz to 5.5 GHz. The designed mixer with low-pass filter shows the conversion gain of better than 7 dB from 1.5 GHz to 5.5 GHz at the low LO power level of 0 dBm with the fixed IF frequency of 21.4 MHz.

  • PDF

Multi Folded Dual rectangle loop Type Dual Monopole Antenna (다중 폴드 이중 사각루프형태의 이중 모노폴 안테나)

  • Lee, Hyeon-Jin;Choi, Tea-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.5-9
    • /
    • 2012
  • In this paper, multi folded dual monopole antenna for WLAN communication of dual bend is designed and fabricated. The proposed multi folded dual monopole antenna are consisted of two folded rectangle loops by microstrip fed that is modified dual monopole antenna. Therefore, the outside rectangle loop structure of the proposed antenna is extended a dual monopole. The characteristics of the proposed antenna is analyzed return loss and radiation patterns by the FDTD tools. As a result a bandwidth of proposed antenna has about 0.82GHz from 2.0 to 2.82[GHz] and 0.7GHz from 5.46 to 6.16[GHz]. It is used WLAN communications of 2[GHz] and 5[GHz].

Design of Multi-Band Low Noise Amplifier Using Switching Transistors for 2.4/3.5/5.2 GHz Band (스위칭 트랜지스터를 이용하여 2.4/3.5/5.2 GHz에서 동작하는 다중 대역 저잡음 증폭기 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.214-219
    • /
    • 2011
  • This paper presents a multi-band low noise amplifier(LNA) with switching operation for 2.4, 3.5 and 5.2 GHz bands using CMOS 0.18 um technology. The proposed circuit uses switching transistors to achieve the input and output matching for multi-band. By using the switching transistors, we can adjust the transconductance, gate inductance and gatesource capacitance at input stage and total output capacitance at output stage. The proposed LNA exhibits gain of 14.2, 12 and 11 dB and noise figure(NF) of 3, 2.9 and 2.8 dB for 2.4, 3.5 and 5.2 GHz, respectively.

Multi-Band Antenna Design by Controlling Characteristic of Third Order Mode (고차 모드 주파수 특성 제어 다중 대역 안테나)

  • Yu, Jaekyu;Zhang, Rui;Liu, Yang;Lee, Jaeseok;Kim, Hyung-Hoon;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1343-1350
    • /
    • 2012
  • This paper presents a new method for designing a dual-band WIFI antenna using the third-order harmonic mode of a monopole antenna whose first-order mode operates at the low frequency band of WIFI. As analysing the current distribution of the third-order mode of this monopole antenna, the strongest point of electric field can be found. Then by attaching a stub at this point, the resonant frequency of the stub radiator can be adjusted from the third-order mode of the monopole antenna into the high frequency band of WIFI and the input impedance at this resonant frequency can be controlled with the width of the branch, without affecting the low frequency band of WIFI (the first-order mode of the monopole antenna). The compact dual-band antenna is designed at the size of an USB(universal serial bus) dongle and the bandwidth covers 600 MHz(2.3~3 GHz) at 2 GHz and 1 GHz(4.9~5.9 GHz) at 5 GHz under -10 dB which is satisfied with WLAN frequency. Efficiency of proposed antenna achieves over 50 % at WLAN frequency.

Miniaturization of Embedded Bandpass Filter in LTCC Multilayer Substrate for WiMAX Applications

  • Cho, Youngseek;Choi, Seyeong
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • A compact radio frequency (RF) bandpass filter (BPF) in low temperature co-fired ceramic (LTCC) is suggested for WiMAX applications. The center frequency ($f_0$) of the BPF is 5.5 GHz and its pass band or 3-dB bandwidth is 700 MHz to cover all the three major bands, low and middle unlicensed national information infrastructure (U-NII; 5.15-5.35 GHz), World Radiocommunication Conference (5.47-5.725 GHz), and upper U-NII/industrial, scientific, and medical (ISM) (5.725-5.85 GHz), for the WiMAX frequency band. A lumped circuit element design-the 5th order capacitively coupled Chebyshev BPF topology-is adopted. In order to design a compact RF BPF, a very thin ($43.18{\mu}m$) ceramic layer is used in LTCC substrate. An interdigital BPF is also designed in silicon substrate to compare the size and performance of the lumped circuit element BPF. Due to the high relative dielectric constant (${\varepsilon}_r$ = 11.9) of the silicon substrate, the quarter-wavelength resonator of the interdigital BPF can be reduced. In comparison to the 5th order interdigital BPF at $f_0$ = 5.5 GHz, the lumped element design is 24% smaller in volume and has 17 and 7 dB better attenuation characteristics at $f_0{\pm}0.75$ GHz.

Study on the Design and Fabrication of Traveling-Wave Ti:LiNbO$_3$Phase Optical Modulators (진행파형 Ti:LiNbO$_3$위상 광변조기 설계 및 제작에 관한 연구)

  • 정홍식;서정하;엄진섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1782-1792
    • /
    • 1994
  • Ti : $LiNbO_3$ traveling-wave phase optical modulators at wavelength 1.3㎛ have been designed and fabricated, focusing on the optical waveguide and asymmetric coplanar electrode structure. To improve the phase-mismatch of traveling-wave ACPS electrode, the characteristic impedance, effective microwave index, and electrode loss have been presented as a function of geometric parameters including electrode and buffer layer thickness. Low-loss channel optical waveguides on $LiNbO_3$ were fabricated by the Ti diffusion method with $O_2$ water-vapor environment. $2.5{\mu}m$ thick electrode was successfully fabricated by double-spin image reversal process. Modulation bandwidth was limited by a resonance at 2.9 GHz and modulation bandwidth up to 2.5GHz was approxirnately measured.

  • PDF

A Design of CPW Band-Pass Filter with Rejection Band for Ultra-Wideband System (저지 대역을 갖는 UWB용 CPW 대역 통과 여파기의 설계)

  • No, Jin-Won;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.704-709
    • /
    • 2007
  • In this paper, a CPW band-pass filter with a rejection band is proposed for UWB(Ultra-Wideband) communication systems. The proposed filter has a band-pass characteristic of wide-band by inserting only a slot in $50{\Omega}$ transmission line. To obtain the band-rejection function at WLAN frequency band($5.15{\sim}5.725GHz$), the designed filter is combined with folded slot resonators on the ground plane of the CPW structure. The fabricated CPW band-pass filter shows a compact size of $15.35{\times}13.60mm$, a wide passband of 2.8 GHz to 9.8 GHz and the narrow stop-band of 5.15 GHz to 5.71 GHz for 3-dB bandwidth. Also, the measured group delay is less than 400 psec throughout the operation frequency band except the rejection band.

A novel circular fractal ring UWB monopole antenna with dual band-notched characteristics

  • Kayhan Celik
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.218-226
    • /
    • 2024
  • This paper presents a novel circular fractal ring monopole antenna for ultra-wideband (UWB) hardware with dual band-notched properties. The proposed antenna consists of four crescent-shaped nested rings, a tapered feeding line at the front of the dielectric material, and a semicircular ground plane on the backside. In this design, the nested rings are used both as a radiation element and a band rejection element. The proposed antenna has a bandwidth of 9.03 GHz, which works efficiently in the range of 2.63 GHz-11.66 GHz with the dual notched bands of Worldwide Interoperability for Microwave Access (WiMAX) at 3.15 GHz-3.66 GHz and wireless local area network (WLAN) at 4.9 GHz-5.9 GHz, respectively. The antenna has a compact size of 20 mm × 30 mm × 1 mm (0.177 × 0.265 × 0.0084 λ0) and is implemented using a flame-retardant type 4 (FR4) material. It has a maximum gain of approximately 4 dB in its operating range, and experimental results support the simulation predictions with high accuracy. The findings of this study imply that the designed antenna can be utilized in UWB applications.