Park, Kyoung-Sun;Bang, Hyo-Weon;Shin, Eun-Young;Kim, Chan-Hyung;Kim, Yang-Mi
The Korean Journal of Physiology and Pharmacology
/
v.12
no.4
/
pp.211-216
/
2008
TREK (TWIK-RElated $K^+$ channels) and TRAAK (TWIK-Related Arachidonic acid Activated $K^+$ channels) were expressed in COS-7 cells, and the channel activities were recorded from inside-out membrane patches using holding potential of - 40 mV in symmetrical 150 mM $K^+$ solution. Intracellular application of an oxidizing agent, 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB), markedly decreased the activity of the TREK2, and the activity was partially reversed by the reducing agent, dithiothreitol (DTT). In order to examine the possibility that the target sites for the oxidizing agents might be located in the C-terminus of TREK2, two chimeras were constructed: TREK2 (1-383)/TASK3C and TREK2 (1-353)/TASK3C. The channel activity in the TREK2 (1-383)/TASK3C chimera was still inhibited by DTNB, but not in the TREK2 (1-353)/TASK3C chimera. These results indicate that TREK2 is inhibited by oxidation, and that the target site for oxidation is located between the amino acid residues 353 and 383 in the C-terminus of the TREK2 protein.
Acetolactate synthase (ALS) was partially purified from Escherichia coli MF2000/pTATX containing Arabidopsis thaliana ALS gene. The partially purified ALS was examined for its sensitivity toward various modifying reagents such as iodoacetic acid, iodoacetamide, N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (PCMB), and phenylglyoxal. It was found that PCMB inhibited the enzyme activity most strongly followed by DTNB and NEM. Since iodoacetic acid did not compete with substrate pyruvate, it appeared that cysteine is not involved in the substrate binding site. On the other hand, the substrate protected the enzyme partly from inactivation by phenylglyoxal, which might indicate interaction of arginine residue with the substrate. The partially purified enzyme was inhibited by end products, valine and isoleucine, but not by leucine. However, the ALS modified with PCMB led to potentiate the feedback inhibition of all end products. Additionally, derivatives of pyrimidyl sulfur benzoate, a candidate for a new herbicide for ALS, were examined for their inhibitory effects.
SH group modifying chemicals were used to characterize the eight cysteine residues of cabbage PLD. 5,5-dithiobis(2-nitrobenzoate)(DTNB) was used to titrate the SH group of cysteine residues . Based on the optical density at 412nm due to the reduced DTNB, 4 SH groups are found to be present in a native PLD while 8 SH groups in the denatured PLD whose tertiary structure was perturbed by 8M urea. The results imply that among the 8 cysteine residues of PLD, the half(4) are exposed on the surface whereas the other half are present at the interior of the enzyme tertiary structure. The PLD was inactivated by SH modifying reagents such as p-chloromercuribenzoate(PCMB), iodoacetate, iodoacetamide, and N-ethylmaleimide. At the addition of dithiothreitol(DTT) only the PCMB inhibited PLD activity was recovered reversibly. The micro-environment of the exposed SH group of cysteine residues was examined with various disulfide compounds with different functional groups and we found that anionic or neutral disulfides appear to be more effective than the positively charged cystamine for inactivating the PLD activity. The effect of redox state of cysteine residues on the PLD activity was further explored with H2O2. The oxidation of SH groups by H2O2 inhibited the PLD activity more than 70%, which was mostly recovered by DTT. From these results, we could confirm chemically that all the cysteine residues of PLD are present as in their reduced SH forms and the 4 SH groups exposed on the surface of the enzyme may play important roles in the regulation of PLD activity.
5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) was selected as an electron transfer mediator and was covalently immobilized onto high porosity carbon cloth to employ as a working electrode in an electrochemical $NAD^+$-regeneration process, which was coupled to an enzymatic reaction. The voltammetric behavior of DTNB attached to carbon cloth resembled that of DTNB in buffered aqueous solution, and the electrocatalytic anodic current grew continuously upon addition of NADH at different concentrations, indicating that DTNB is immobilized to carbon cloth effectively and the immobilized DTNB is active as a soluble one. The bioelectrocatalytic $NAD^+$ regeneration was coupled to the conversion of L-glutamate into ${\alpha}$-ketoglutarate by L-glutamate dehydrogenase within the same microreactor. The conversion at 3 mM monosodium glutamate was very rapid, up to 12 h, to result in 90%, and then slow up to 24 h, showing 94%, followed by slight decrease. Low conversion was shown when substrate concentration exceeding 4 mM was tested, suggesting that L-glutamate dehydrogenase is inhibited by ${\alpha}$-ketoglutarate. However, our electrochemical $NAD^+$ regeneration procedure looks advantageous over the enzymatic procedure using NADH oxidase, from the viewpoint of reaction time to completion.
We carried out the expression and characterization of yeast thioredoxin system including thioredexin 1 (Trx1), Trx2, thioredoxin reductase (TR), and a novel thioredoxin (Trx3), which was reported in the data base of Saccharomyces genome. The Trx1, 2 and TR were expressed as soluble proteins in E. coli and the sizes of purified proteins were equal to the reported their molecular weights. The expressed Trx3 was found in both soluble fraction and precipitate. The size of Trx3 purified from soluble fraction of E. coli crude extracts was estimated as 14 kDa on SDS-PAGE instead of 18 kDa for Trx3 in precipitate. N-terminal amino acid sequence of the small size of purified Trx3 from soluble fraction was analyzed as FQSSYTS which is correspond to the sequence from 20 to 26 for Trx3. Trx3 together with thioredoxin reductase and NADPH was able to reduce the disulfide bridge of insulin and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Trx3 stimulated the antioxidant effect of thioredoxin peroxidase 1 (TPx1) which inhibited inactivation of glutamine synthetase (GS) in dithiothreitol (DTT) containing metal catalyzed oxidation system. The stimulation effect of Trx3 was 10% of the effect of either Trx1 or Trx2. In addition, Trx3 could reduce the disulfide of TPx to thiol, so that the TPx had thioredoxin dependant peroxidase activity. In western blotting analysis, antibodies against purified Trx3 did not cross-react with crude extracts of yeast, purified Trx1, and Trx2 proteins. But, in PCR reaction using the cDNA library of yeast as a template, gene encoding of trx3 was amplified.
The dibucaine number (DN) was determined for serum cholinesterase (EC 3.1.1.8, SChE) in plasma samples. The ones with a DN of 79-82 were used, because they had the "usual" SChE variant. The enzyme was assayed colorimetrically by the reaction of 5,5'-dithiobis-[2-nitrobenzoic acid] (DTNB) with the free sulfhydryl groups of thiocholine that were produced by the enzyme reaction with butrylthiocholine (BuTch) or acetylthiocholine (AcTch) substrates, and measured at 412 nm. Dibucaine, a quaternary ammonium compound, inhibited SChE to a minimum within 2 min in a reversible manner. The inhibition was very potent. It had an $IC_{50}$ of $5.3\;{\mu}M$ with BuTch or $3.8\;{\mu}M$ with AcTch. The inhibition was competitive with respect to BuTch with a $K_i$ of $1.3\;{\mu}M$ and a linear-mixed type (competitive/noncompetitive) with respect to AcTch with inhibition constants, $K_i$ and $K_I$ of 0.66 and $2.5\;{\mu}M$, respectively. Dibucaine possesses a butoxy side chain that is similar to the butryl group of BuTch and longer by an ethylene group from AcTch. This may account for the difference in inhibition behavior. It may also suggest the existence of an additional binding site, other than the anionic binding site, and of a hydrophobic nature.
Peptide assimilation by Helicobacter pylori was investigated using L-phenylalanyl-3-thia-phenylalanine (PSP) as a detector peptide; the release of thiophenol upon enzymatic hydrolysis of PSP was spectrophotometrically detected with the aid of 5,5'-dithiobis[2-nitrobenzoic acid] (DTNB). By adding PSP to whole-cell suspension, thiophenol was produced progressively, resembling that found in Esherichia coli or Staphylococcus aureus. Interestingly, the rate of thiophenol production by H pylori in particular was markedly reduced when cells were pretreated with trypsin, indicating surface exhibition of peptidase. According to the competitive spectrophotometry using alanyl-peptides, H pylori did not appear to assimilate PSP through the peptide transport system. No discernible PSP assimilation could be ascertained in H pylori cells, unless provided with some additives necessary for peptidase activity, such as $Ni^{2+}\;or\;Mg^{2+}$ and an appropriate concentration of potassium or ammonium salts. These observations strongly suggest that, regardless of a presumptive peptide transport system, peptide assimilation of H. plori appears to be highly dependent upon milieu conditions, due to unique peptidase exhibition on the cell surface.
Cytoplasmic $\alpha$-glycerol-3-phosphate dehydrogenase from fruit-bat-breast muscle was purified by ion-exchange and affinity chromatography. The specific activity of the purified enzyme was approximately 120 units/mg of protein. The apparent molecular weight of the native enzyme, as determined by gel filtration on Sephadex G-100 was $59,500{\pm}650$ daltons; its subunit size was estimated to be $35,700{\pm}140$ by SDS-polyacrylamide gel electrophoresis. The true Michaelis-Menten constants for all substrates at pH 7.5 were $3.9{\pm}0.7\;mM$, $0.65{\pm}0.05\;mM$, $0.26{\pm}0.06\;mM$, and $0.005{\pm}0.0004\;mM$ for L-glycerol-3-phosphate, $NAD^+$, DHAP, and NADH, respectively. The true Michaelis-Menten constants at pH 10.0 were $2.30{\pm}0.21\;mM$ and $0.20{\pm}0.01\;mM$ for L-glycerol-3-phosphate and $NAD^+$, respectively. The turnover number, $k_{cat}$, of the forward reaction was $1.9{\pm}0.2{\times}10^4\;s^{-1}$. The treatment of the enzyme with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) under denaturing conditions indicated that there were a total of eight cysteine residues, while only two of these residues were reactive towards DTNB in the native enzyme. The overall results of the in vitro experiments suggest that $\alpha$-glycerol-3-phosphate dehydrogenase of the fruit bat preferentially catalyses the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate.
Journal of the Korean Society of Food Science and Nutrition
/
v.9
no.1
/
pp.59-73
/
1980
A detailed procedure was described for the isolation of cratine kinase (ATP-Creatine phosphotransferase, E. C. 2. 7. 3. 2.) from the muscle of the snake Bungarus fasciatus. The original isolation procedure of Kuby et al. for the rabbit muscle enzyme has been modified and extended to include a chromatographic step. The properties of the enzyme have been investigated and kinetic constants for the reverse reactions determined as the followings: 1) A molecular weight of the enzyme was determined by gel filteration on Sephadex G-100 and by electrophoresis on SDS-polyacrylamide was 86,000. 2) Two reactive sulphydryl groups were detected with dithiobis nitrobenzoic acid (DTNB). 3) The nucleotide substrate specificity in the reverse reaction was determined as ADP*2'-dADP>GDP>XDP>UDP with magnesium as the activating metal ion. 4) The order of the metal specificity in the reverse reaction Mg>Mn>$Ca{\sim}Co$ was determined with ADP as substrate. 5) A detailed kinetic analysis was carried out in the reverse direction with $MaADP^-$ as the nucleotide substrate. Initial velocity and product inhibition studies($MaADP^{2-}$ competitive with respect to MgADP- and noncompetitive with respect to $N-phosphorycreatine^{2-}$ ; Creatine competitive with respect to $N-phosphorycreatine^{2-}$ and noncompetitive with respect to Ma $ADP^-)$ indicated that the reaction obeyed a sequential mechanism of the rapid equilibrium random type.
Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In the present study, whole cell patch clamp recordings were carried out to investigate the effects of tert-buthyl hydroperoxide (t-BuOOH), an ROS, on neuronal excitability and the mechanisms underlying changes of membrane excitability. In current clamp condition, application of t-BuOOH caused a reversible membrane depolarization and firing activity in substantia gelatinosa (SG) neurons. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) and ascorbate, ROS scavengers, t-BuOOH failed to induce membrane depolarization. However, isoascorbate did not prevent t-BuOOH-induced depolarization, suggesting that the site of ROS action is intracellular. The t-BuOOH-induced depolarization was not blocked by pretreatment with dithiothreitol (DTT), a sulfhydryl-reducing agent. The membrane-impermeant thiol oxidant 5,5-dithiobis 2-nitrobenzoic acid (DTNB) failed to induce membrane depolarization, suggesting that the changes of neuronal excitability by t-BuOOH are not caused by the modification of extrathiol group. The t-BuOOH-induced depolarization was suppressed by the phospholipase C (PLC) blocker U-73122 and inositol triphosphate ($IP_3$) receptor antagonist 2-aminoethoxydiphenylbolate (APB), and after depletion of intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord, and t-BuOOH-induced depolarization may be regulated by intracellular $Ca^{2+}$ store mainly via $PLC-IP_3$ pathway.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.