Acknowledgement
Supported by : Chonbuk National University
References
-
Anne, A., C. Bourdillon, S. Daninos, and J. Moiroux. 1999. Can the combination of electrochemical regeneration of
$NAD^+$ , selectivity of$_L$ -${\alpha}$ -amino-acid dehydrogenase, and reductive amination of${\alpha}$ -keto-acid be applied to the inversion of configuration of a$_L$ -${\alpha}$ -amino-acid. Biotechnol. Bioeng. 64: 101-107. https://doi.org/10.1002/(SICI)1097-0290(19990705)64:1<101::AID-BIT11>3.0.CO;2-L - Antiochia, R., I. Lavagnini, and F. Magno. 1999. Electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide with ferrocene carboxylic acid by diaphorase from Clostridium kluyveri. Remarks on the kinetic approaches usually adopted. Electroanalysis 11: 129-133. https://doi.org/10.1002/(SICI)1521-4109(199902)11:2<129::AID-ELAN129>3.0.CO;2-S
- Basso, L. A., P. C. Engel, and A. R. Walmsley. 1993. The mechanism of substrate and coenzyme binding to clostridial glutamate dehydrogenase during oxidative deamination. Eur. J. Biochem. 213: 935-945. https://doi.org/10.1111/j.1432-1033.1993.tb17838.x
- Brown, A., A. H. Colen, and H. F. Fisher. 1978. Effect of ammonia on the glutamate dehydrogenase catalyzed oxidative deamination of L-glutamate: Production of an ammonia-containing intermediate in the "burst" phase. Biochemistry 17: 2031-2034. https://doi.org/10.1021/bi00603a036
-
Brown, A., A. H. Colen, and H. F. Fisher. 1979. Effect of ammonia on the glutamate dehydrogenase catalyzed oxidative deamination of
$_L$ -glutamate. The steady state. Biochemistry 18: 5924-5928. https://doi.org/10.1021/bi00593a025 - Casero, E., M. Darder, K. Takada, H. D. Abruna, F. Pariente, and E. Lorenzo. 1999. Electrochemically triggered reaction of a surface-confined reagent: Mechanistic and EQCM characterization of redox-active self-assembling monolayers derived from 5,5'-dithiobis(2-nitrobenzoic acid) and related materials. Langmuir 15: 127-134. https://doi.org/10.1021/la9806552
- Chenault, H. K. and G. M. Whitesides. 1987. Regeneration of nicotinamide cofactors for use in organic synthesis. Appl. Biochem. Biotechnol. 14: 147-197. https://doi.org/10.1007/BF02798431
- Grundig, B., G. Wittstock, U. Rüdel, and B. Strehlitz. 1995. Mediator-modified electrodes for electrocatalytic oxidation of NADH. J. Electroanal. Chem. 395: 143-157. https://doi.org/10.1016/0022-0728(95)04090-B
- Kitpreechavanich, V., N. Nishio, M. Hayashi, and S. Nagai. 1985. Regeneration and retention of NADP(H) for xylitol production in an ionized membrane reactor. Biotechnol. Lett. 7: 657-662. https://doi.org/10.1007/BF01040204
- Klibanov, A. L., M. A. Slinkin, and V. P. Torchilin. 1989. Conjugation of proteins with chelating polymers via watersoluble carbodiimide and N-hydroxysulfosuccinimide. Appl. Biochem. Biotechnol. 22: 45-58. https://doi.org/10.1007/BF02922696
- Miyawaki, O. and L. B. Wingard Jr. 1985. Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group. Biochim. Biophys. Acta 838: 60-68. https://doi.org/10.1016/0304-4165(85)90250-8
-
Miyawaki, O. and T. Yano. 1992. Electrochemical bioreactor with regeneration of
$NAD^+$ by rotating graphite disk electrode with PMS adsorbed. Enzyme Microb. Technol. 14: 474-478. https://doi.org/10.1016/0141-0229(92)90140-J -
Obon, J. M., P. Casanova, A. Manjon, V. M. Femandez, and J. L. Iborra. 1997. Stabilization of glucose dehydrogenase with polyethyleneimine in an electrochemical reactor with
$NAD(P)^+$ regeneration. Biotechnol. Prog. 13: 557-561. https://doi.org/10.1021/bp970063u -
Odman, P., W. B. Wellborn, and A. S. Bommarius. 2004. An enzymatic process to
${\alpha}$ -ketoglutarate from$_L$ -glutamate: The coupled system$_L$ -glutamate dehydrogenase/NADH oxidase. Tetrahedron Asymmetry 15: 2933-2937. https://doi.org/10.1016/j.tetasy.2004.07.055 -
Ogino, Y., K. Takagi, K. Kano, and T. Ikeda. 1995. Reaction between diaphorase and quinone compounds in bioelectrocatalytic redox reactions of NADH and
$NAD^+$ . J. Electroanal. Chem. 396: 517-524. https://doi.org/10.1016/0022-0728(95)04089-7 - Osa, T., Y. Kashiwagi, and Y. Yanagisawa. 1994. Electroenzymatic oxidation of alcohols on a poly(acrylic acid)-coated graphite felt electrode terimmobilizing ferrocene, diaphorase and alcohol dehydrogenase. Chem. Lett. 23: 367-368.
-
Riedel, E., M. Nundel, and H. Hampl. 1996.
${\alpha}$ -Ketoglutarate application in hemodialysis patients improves amino acid metabolism. Nephron 74: 261-265. https://doi.org/10.1159/000189319 - Schwartz, D., M. Stein, K. H. Schneider, and F. Giffhorn. 1994. Synthesis of D-xylulose from D-arabitol by enzymatic conversion with immobilized mannitol dehydrogenase from Rhodobacter sphaeroides. J. Biotechnol. 33: 95-101. https://doi.org/10.1016/0168-1656(94)90102-3
- Seelbach, K. and U. Krag. 1997. Nanofiltration membranes for cofactor retention in continuous enzymatic synthesis. Enzyme Microb. Technol. 20: 389-392. https://doi.org/10.1016/S0141-0229(96)00166-4
- Simon, E. and P. N. Bartlett. 2003. Modified electrodes for the oxidation of NADH. In J. F. Rusling (ed.). Biomolecular Films, Surfactant Science Series 111. Marcel Dekker, New York.
-
Syed, S. E. H., P. C. Engel, and D. M. Parker. 1991. Functional studies of a glutamate dehydrogenase with known threedimensional structure: Steady-state kinetics of the forward and reverse reactions catalysed by the
$NAD^+$ -dependent glutamate dehydrogenase of Clostridium symbiosum. Biochim. Biophys. Acta 1115: 123-130. https://doi.org/10.1016/0304-4165(91)90020-H -
Takagi, K., K. Kano, and T. Ikeda. 1998. Mediated bioelectrocatalysis based on
$NAD^+$ -related enzymes with reversible characteristics. J. Electroanal. 445: 211-219. https://doi.org/10.1016/S0022-0728(97)00585-8 - Teplan, V., O. Schuck, M. Votruba, R. Poledne, L. Kazdova, J. Skibova, and J. Maly. 2001. Metabolic effects of keto-acidamino acid supplementation in patients with chronic renal insufficiency receiving a low-protein diet and recombinant human erythropoietin-a randomized controlled trial. Wien. Klin. Wochenschr. 113: 661-669.
- Zare, H. R. and S. M. Golabi. 1999. Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) modified glassy carbon electrode. J. Electroanal. Chem. 464: 14-23. https://doi.org/10.1016/S0022-0728(98)00459-8