• Title/Summary/Keyword: 4-boundary conditions

Search Result 1,090, Processing Time 0.027 seconds

THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO p-LAPLACE EQUATION WITH PERIODIC BOUNDARY CONDITIONS

  • Chen, Taiyong;Liu, Wenbin;Zhang, Jianjun;Zhang, Huixing
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.933-941
    • /
    • 2009
  • In this paper, we consider p-Laplace equation which models the turbulent flow in a porous medium. Using a continuation principle (cf. [R. $Man{\acute{a}}sevich$ and J. Mawhin, Periodic solutions for nonlinear systems with p-Lplacian-like operators, J. Diff. Equa. 145(1998), 367-393]), we prove the existence of solutions for p-Laplace equation subject to periodic boundary conditions, under some sign and growth conditions for f. With the help of Leray-Schauder degree theory, the multiplicity of periodic solutions for p-Laplace equation is obtained under the similar conditions above and some known results are improved.

  • PDF

POSITIVE SOLUTIONS OF SELF-ADJOINT BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS AT RESONANCE

  • Yang, Aijun;Ge, Weigao
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • In this paper, we study the self-adjoint second order boundary value problem with integral boundary conditions: (p(t)x'(t))'+f(t,x(t))=0, t $${\in}$$ (0,1), x'(0)=0, x(1) = $${\int}_0^1$$ x(s)g(s)ds. A new result on the existence of positive solutions is obtained. The interesting points are: the first, we employ a new tool-the recent Leggett-Williams norm-type theorem for coincidences; the second, the boundary value problem is involved in integral condition; the third, the solutions obtained are positive.

  • PDF

Fourier Series Expansion Method for Free Vibration Analysis of a Fully Liquid-Filled Circular Cylindrical Shell (Fourier 급수전개를 이용한 유체로 가득 채워진 원통형 셸의 고유진동 해석)

  • 정경훈;이성철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.137-146
    • /
    • 1994
  • An analytical method for linear free vibration of fully liquid-filled circular cylindrical shell with various boundary conditions is developed by the Fourier series expansion based on the Stokes' transformation. A set of modal displacement functions and their derivatives of a circular cylindrical shell is substituted into the Sanders' shell equations in order to explicitily represent the Fourier coefficients as functions of the end point displacements, forces, and moments. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in the axial directions. The unknown parameter of the velocity potential is selected to satisfy the boundary condition along the wetted shell surface. An explicit expression of the natural frequency equation can be obtained for any kind of classical boundary conditions. The natural frequencies of the liquid-filled cylindrical shells with the clamped-free, the clamped-clamped, and the simply supported-simply supported boundary conditions examined in the previous works, are obtained by the analytical method. The results are compared with the previous works, and excellent agreement is found for the natural frequencies of the shells.

  • PDF

The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQM

  • Ghasemi, Ahmad Reza;Mohandes, Masood
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.379-397
    • /
    • 2016
  • In this manuscript, free vibrations of a unidirectional composite orthotropic Timoshenko beam based on finite strain have been studied. Using Green-Lagrange strain tensor and comprising all of the nonlinear terms of the tensor and also applying Hamilton's principle, equations of motion and boundary conditions of the beam are obtained. Using separation method in single-harmonic state, time and locative variables are separated from each other and finally, the equations of motion and boundary conditions are gained according to locative variable. To solve the equations, generalized differential quadrature method (GDQM) is applied and then, deflection and cross-section rotation of the beam in linear and nonlinear states are drawn and compared with each other. Also, frequencies of carbon/epoxy and glass/epoxy composite beams for different boundary conditions on the basis of the finite strain are calculated. The calculated frequencies of the nonlinear free vibration of the beam utilizing finite strain assumption for various geometries have been compared to von Karman one.

An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory

  • Larbi, Latifa Ould;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2018
  • In this paper, a simple first-order shear deformation theory is presented for dynamic behavior of functionally graded beams. Unlike the existing first-order shear deformation theory, the present one contains only three unknowns and has strong similarities with the classical beam theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported FG beam are obtained and the results are compared with Euler-Bernoulli beam and the other shear deformation beam theory results. Comparison studies show that this new first-order shear deformation theory can achieve the same accuracy of the existing first-order shear deformation theory.

Stability Analysis of Nanopipes Considering Nonlocal Effect (Nonlocal 효과를 고려한 나노파이프의 안정성 해석)

  • Choi, Jongwoon;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.324-331
    • /
    • 2013
  • In this paper, static and oscillatory instability of a nanotube conveying fluid and modeled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin method which enables us to obtain more accurate results compared with conventional Galerkin method. Variations of critical flow velocity of carbon nanopipes with two different boundary conditions based on the analytically nonlocal theory and partially nonlocal theory are investigated and pertinent conclusions are outlined.

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Articulatory modification of /m/ in the coda and the onset as a function of prosodic boundary strength and focus in Korean

  • Kim, Sahyang;Cho, Taehong
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.3-15
    • /
    • 2014
  • An articulatory study (using an Electromagnetic Articulography, EMA) was conducted to explore effects of prosodic boundary strength (Intonational Phrase/IP versus Word/Wd), and focus (Focused/accented, Neutral, Unfocused/unaccented) on the kinematic realization of /m/ in the coda (${\ldots}$am#i${\ldots}$) and the onset (${\ldots}$a#mi${\ldots}$) conditions in Korean. (Here # refers to a prosodic boundary such as an IP or a Wd boundary). Several important points have emerged. First, the boundary effect on /m/s was most robustly observed in the temporal dimension in both the coda (IP-final) and the onset (IP-initial) conditions, generally in line with cross-linguistically observable boundary-related lengthening patterns. Crucially, however, in contrast with boundary-related slowing-down effects that have been observed in English, both the IP-final and IP-initial temporal expansions of Korean /m/s were not accompanied by an articulatory slowing down. They were, if anything, associated with a faster movement in the lip opening (release) phase (into the vowel). This suggests that the mechanisms underlying boundary-related temporal expansions may differ between languages. Second, observed boundary-induced strengthening effects (both spatial and temporal expansions, especially on the IP-initial /m/s) were remarkably similar to prominence (focus)-induced strengthening effects, which is again counter to phrase-initial strengthening patterns observed in English in which boundary effects are dissociated from prominent effects. This suggests that initial syllables in Korean may be a common focus for both boundary and prominence marking. These results, taken together, imply that the boundary-induced strengthening in Korean is different in nature from that in English, each being modulated by the individual language's prosodic system. Third, the coda and the onset /m/s were found to be produced in a subtly but significantly different way even in a Wd boundary condition, a potentially neutralizing (resyllabification) context. This suggests that although the coda may be phonologically 'resyllabified' into the following syllable in a phrase-medial position, its underlying syllable affiliation is kinematically distinguished from the onset.

AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION

  • Jeong, Darae;Ha, Taeyoung;Kim, Myoungnyoun;Shin, Jaemin;Yoon, In-Han;Kim, Junseok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1087-1100
    • /
    • 2014
  • We present an accurate and efficient numerical method for solving the Black-Scholes equation. The method uses an adaptive grid technique which is based on a far-field boundary position and the Peclet condition. We present the algorithm for the automatic adaptive grid generation: First, we determine a priori suitable far-field boundary location using the mathematical model parameters. Second, generate the uniform fine grid around the non-smooth point of the payoff and a non-uniform grid in the remaining regions. Numerical tests are presented to demonstrate the accuracy and efficiency of the proposed method. The results show that the computational time is reduced substantially with the accuracy being maintained.

Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles

  • Lopes, M.F.P.;Paixao Conde, J.M.;Gomes, M. Gloria;Ferreira, J.G.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.487-498
    • /
    • 2010
  • When designing structures to the wind action, the variation of the mean wind velocity and turbulence parameters with the height above the ground must be taken into account. This paper presents the numerical simulation results of atmospheric boundary layer (ABL) airflows, in a numerical domain with no obstacles and with a cubic building. The results of the flow characterization, obtained with the FLUENT CFD code were performed using the ${\kappa}-{\varepsilon}$ turbulence model with the MMK modification. The mean velocity and turbulence intensity profiles in the inflow boundary were defined in accordance with the Eurocode 1.4, for different conditions of aerodynamic roughness. The maintenance of the velocity and turbulence characteristics along the domain were evaluated in an empty domain for uniform incident flow and the ABL Eurocode velocity profiles. The pressure coefficients on a cubic building were calculated using these inflow conditions.